# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """YOLOv3 dataset""" from __future__ import division import os import numpy as np from matplotlib.colors import rgb_to_hsv, hsv_to_rgb from PIL import Image import mindspore.dataset as de from mindspore.mindrecord import FileWriter import mindspore.dataset.vision.c_transforms as C from src.config import ConfigYOLOV3ResNet18 iter_cnt = 0 _NUM_BOXES = 50 np.random.seed(1) de.config.set_seed(1) def preprocess_fn(image, box, is_training): """Preprocess function for dataset.""" config_anchors = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 163, 326] anchors = np.array([float(x) for x in config_anchors]).reshape(-1, 2) do_hsv = False max_boxes = 20 num_classes = ConfigYOLOV3ResNet18.num_classes def _rand(a=0., b=1.): return np.random.rand() * (b - a) + a def _preprocess_true_boxes(true_boxes, anchors, in_shape=None): """Get true boxes.""" num_layers = anchors.shape[0] // 3 anchor_mask = [[6, 7, 8], [3, 4, 5], [0, 1, 2]] true_boxes = np.array(true_boxes, dtype='float32') # input_shape = np.array([in_shape, in_shape], dtype='int32') input_shape = np.array(in_shape, dtype='int32') boxes_xy = (true_boxes[..., 0:2] + true_boxes[..., 2:4]) // 2. boxes_wh = true_boxes[..., 2:4] - true_boxes[..., 0:2] true_boxes[..., 0:2] = boxes_xy / input_shape[::-1] true_boxes[..., 2:4] = boxes_wh / input_shape[::-1] grid_shapes = [input_shape // 32, input_shape // 16, input_shape // 8] y_true = [np.zeros((grid_shapes[l][0], grid_shapes[l][1], len(anchor_mask[l]), 5 + num_classes), dtype='float32') for l in range(num_layers)] anchors = np.expand_dims(anchors, 0) anchors_max = anchors / 2. anchors_min = -anchors_max valid_mask = boxes_wh[..., 0] >= 1 wh = boxes_wh[valid_mask] if len(wh) >= 1: wh = np.expand_dims(wh, -2) boxes_max = wh / 2. boxes_min = -boxes_max intersect_min = np.maximum(boxes_min, anchors_min) intersect_max = np.minimum(boxes_max, anchors_max) intersect_wh = np.maximum(intersect_max - intersect_min, 0.) intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1] box_area = wh[..., 0] * wh[..., 1] anchor_area = anchors[..., 0] * anchors[..., 1] iou = intersect_area / (box_area + anchor_area - intersect_area) best_anchor = np.argmax(iou, axis=-1) for t, n in enumerate(best_anchor): for l in range(num_layers): if n in anchor_mask[l]: i = np.floor(true_boxes[t, 0] * grid_shapes[l][1]).astype('int32') j = np.floor(true_boxes[t, 1] * grid_shapes[l][0]).astype('int32') k = anchor_mask[l].index(n) c = true_boxes[t, 4].astype('int32') y_true[l][j, i, k, 0:4] = true_boxes[t, 0:4] y_true[l][j, i, k, 4] = 1. y_true[l][j, i, k, 5 + c] = 1. pad_gt_box0 = np.zeros(shape=[50, 4], dtype=np.float32) pad_gt_box1 = np.zeros(shape=[50, 4], dtype=np.float32) pad_gt_box2 = np.zeros(shape=[50, 4], dtype=np.float32) mask0 = np.reshape(y_true[0][..., 4:5], [-1]) gt_box0 = np.reshape(y_true[0][..., 0:4], [-1, 4]) gt_box0 = gt_box0[mask0 == 1] pad_gt_box0[:gt_box0.shape[0]] = gt_box0 mask1 = np.reshape(y_true[1][..., 4:5], [-1]) gt_box1 = np.reshape(y_true[1][..., 0:4], [-1, 4]) gt_box1 = gt_box1[mask1 == 1] pad_gt_box1[:gt_box1.shape[0]] = gt_box1 mask2 = np.reshape(y_true[2][..., 4:5], [-1]) gt_box2 = np.reshape(y_true[2][..., 0:4], [-1, 4]) gt_box2 = gt_box2[mask2 == 1] pad_gt_box2[:gt_box2.shape[0]] = gt_box2 return y_true[0], y_true[1], y_true[2], pad_gt_box0, pad_gt_box1, pad_gt_box2 def _infer_data(img_data, input_shape, box): w, h = img_data.size input_h, input_w = input_shape scale = min(float(input_w) / float(w), float(input_h) / float(h)) nw = int(w * scale) nh = int(h * scale) img_data = img_data.resize((nw, nh), Image.BICUBIC) new_image = np.zeros((input_h, input_w, 3), np.float32) new_image.fill(128) img_data = np.array(img_data) if len(img_data.shape) == 2: img_data = np.expand_dims(img_data, axis=-1) img_data = np.concatenate([img_data, img_data, img_data], axis=-1) dh = int((input_h - nh) / 2) dw = int((input_w - nw) / 2) new_image[dh:(nh + dh), dw:(nw + dw), :] = img_data new_image /= 255. new_image = np.transpose(new_image, (2, 0, 1)) new_image = np.expand_dims(new_image, 0) return new_image, np.array([h, w], np.float32), box def _data_aug(image, box, is_training, jitter=0.3, hue=0.1, sat=1.5, val=1.5, image_size=(352, 640)): """Data augmentation function.""" if not isinstance(image, Image.Image): image = Image.fromarray(image) iw, ih = image.size ori_image_shape = np.array([ih, iw], np.int32) h, w = image_size if not is_training: return _infer_data(image, image_size, box) flip = _rand() < .5 # correct boxes box_data = np.zeros((max_boxes, 5)) while True: # Prevent the situation that all boxes are eliminated new_ar = float(w) / float(h) * _rand(1 - jitter, 1 + jitter) / \ _rand(1 - jitter, 1 + jitter) scale = _rand(0.25, 2) if new_ar < 1: nh = int(scale * h) nw = int(nh * new_ar) else: nw = int(scale * w) nh = int(nw / new_ar) dx = int(_rand(0, w - nw)) dy = int(_rand(0, h - nh)) if len(box) >= 1: t_box = box.copy() np.random.shuffle(t_box) t_box[:, [0, 2]] = t_box[:, [0, 2]] * float(nw) / float(iw) + dx t_box[:, [1, 3]] = t_box[:, [1, 3]] * float(nh) / float(ih) + dy if flip: t_box[:, [0, 2]] = w - t_box[:, [2, 0]] t_box[:, 0:2][t_box[:, 0:2] < 0] = 0 t_box[:, 2][t_box[:, 2] > w] = w t_box[:, 3][t_box[:, 3] > h] = h box_w = t_box[:, 2] - t_box[:, 0] box_h = t_box[:, 3] - t_box[:, 1] t_box = t_box[np.logical_and(box_w > 1, box_h > 1)] # discard invalid box if len(t_box) >= 1: box = t_box break box_data[:len(box)] = box # resize image image = image.resize((nw, nh), Image.BICUBIC) # place image new_image = Image.new('RGB', (w, h), (128, 128, 128)) new_image.paste(image, (dx, dy)) image = new_image # flip image or not if flip: image = image.transpose(Image.FLIP_LEFT_RIGHT) # convert image to gray or not gray = _rand() < .25 if gray: image = image.convert('L').convert('RGB') # when the channels of image is 1 image = np.array(image) if len(image.shape) == 2: image = np.expand_dims(image, axis=-1) image = np.concatenate([image, image, image], axis=-1) # distort image hue = _rand(-hue, hue) sat = _rand(1, sat) if _rand() < .5 else 1 / _rand(1, sat) val = _rand(1, val) if _rand() < .5 else 1 / _rand(1, val) image_data = image / 255. if do_hsv: x = rgb_to_hsv(image_data) x[..., 0] += hue x[..., 0][x[..., 0] > 1] -= 1 x[..., 0][x[..., 0] < 0] += 1 x[..., 1] *= sat x[..., 2] *= val x[x > 1] = 1 x[x < 0] = 0 image_data = hsv_to_rgb(x) # numpy array, 0 to 1 image_data = image_data.astype(np.float32) # preprocess bounding boxes bbox_true_1, bbox_true_2, bbox_true_3, gt_box1, gt_box2, gt_box3 = \ _preprocess_true_boxes(box_data, anchors, image_size) return image_data, bbox_true_1, bbox_true_2, bbox_true_3, \ ori_image_shape, gt_box1, gt_box2, gt_box3 if is_training: images, bbox_1, bbox_2, bbox_3, _, gt_box1, gt_box2, gt_box3 = _data_aug(image, box, is_training) return images, bbox_1, bbox_2, bbox_3, gt_box1, gt_box2, gt_box3 images, shape, anno = _data_aug(image, box, is_training) return images, shape, anno def anno_parser(annos_str): """Parse annotation from string to list.""" annos = [] for anno_str in annos_str: anno = list(map(int, anno_str.strip().split(','))) annos.append(anno) return annos def filter_valid_data(image_dir, anno_path): """Filter valid image file, which both in image_dir and anno_path.""" image_files = [] image_anno_dict = {} if not os.path.isdir(image_dir): raise RuntimeError("Path given is not valid.") if not os.path.isfile(anno_path): raise RuntimeError("Annotation file is not valid.") with open(anno_path, "rb") as f: lines = f.readlines() for line in lines: line_str = line.decode("utf-8").strip() line_split = str(line_str).split(' ') file_name = line_split[0] if os.path.isfile(os.path.join(image_dir, file_name)): image_anno_dict[file_name] = anno_parser(line_split[1:]) image_files.append(file_name) return image_files, image_anno_dict def data_to_mindrecord_byte_image(image_dir, anno_path, mindrecord_dir, prefix="yolo.mindrecord", file_num=8): """Create MindRecord file by image_dir and anno_path.""" mindrecord_path = os.path.join(mindrecord_dir, prefix) writer = FileWriter(mindrecord_path, file_num) image_files, image_anno_dict = filter_valid_data(image_dir, anno_path) yolo_json = { "image": {"type": "bytes"}, "annotation": {"type": "int64", "shape": [-1, 5]}, } writer.add_schema(yolo_json, "yolo_json") for image_name in image_files: image_path = os.path.join(image_dir, image_name) with open(image_path, 'rb') as f: img = f.read() annos = np.array(image_anno_dict[image_name]) row = {"image": img, "annotation": annos} writer.write_raw_data([row]) writer.commit() def create_yolo_dataset(mindrecord_dir, batch_size=32, repeat_num=10, device_num=1, rank=0, is_training=True, num_parallel_workers=8): """Create YOLOv3 dataset with MindDataset.""" ds = de.MindDataset(mindrecord_dir, columns_list=["image", "annotation"], num_shards=device_num, shard_id=rank, num_parallel_workers=num_parallel_workers, shuffle=False) decode = C.Decode() ds = ds.map(operations=decode, input_columns=["image"]) compose_map_func = (lambda image, annotation: preprocess_fn(image, annotation, is_training)) if is_training: hwc_to_chw = C.HWC2CHW() ds = ds.map(operations=compose_map_func, input_columns=["image", "annotation"], output_columns=["image", "bbox_1", "bbox_2", "bbox_3", "gt_box1", "gt_box2", "gt_box3"], column_order=["image", "bbox_1", "bbox_2", "bbox_3", "gt_box1", "gt_box2", "gt_box3"], num_parallel_workers=num_parallel_workers) ds = ds.map(operations=hwc_to_chw, input_columns=["image"], num_parallel_workers=num_parallel_workers) ds = ds.batch(batch_size, drop_remainder=True) ds = ds.repeat(repeat_num) else: ds = ds.map(operations=compose_map_func, input_columns=["image", "annotation"], output_columns=["image", "image_shape", "annotation"], column_order=["image", "image_shape", "annotation"], num_parallel_workers=num_parallel_workers) return ds