# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.common.initializer import initializer from mindspore.common.parameter import Parameter from mindspore.communication.management import init, NCCL_WORLD_COMM_GROUP, get_rank, get_group_size from mindspore.ops import operations as P from mindspore.ops.operations._inner_ops import Send, Receive from mindspore.common import dtype as mstype context.set_context(mode=context.GRAPH_MODE, device_target='GPU') init() rank = get_rank() size = get_group_size() if size % 2 != 0: raise RuntimeError("Group size should be divided by 2 exactly.") x = np.ones([3, 3, 3, 3]).astype(np.float32) * 0.01 * (rank + 1) class SendNet(nn.Cell): def __init__(self): super(SendNet, self).__init__() self.x = Parameter(initializer(Tensor(x), x.shape), name='x') self.depend = P.Depend() self.send = Send(sr_tag=0, dest_rank=rank+size//2, group=NCCL_WORLD_COMM_GROUP) def construct(self): out = self.depend(self.x, self.send(self.x)) return out class RecvNet(nn.Cell): def __init__(self): super(RecvNet, self).__init__() self.recv = Receive(sr_tag=0, src_rank=rank-size//2, shape=[3, 3, 3, 3], dtype=mstype.float32, group=NCCL_WORLD_COMM_GROUP) def construct(self): out = self.recv() return out def test_send_recv(): if rank < size / 2: send_net = SendNet() output = send_net() else: expect_output = np.ones([3, 3, 3, 3]).astype(np.float32) * 0.01 * (rank-size//2 + 1) recv_net = RecvNet() output = recv_net() diff = abs(output.asnumpy() - expect_output) error = np.ones(shape=output.shape) * 1.0e-5 assert np.all(diff < error) assert expect_output.shape == output.shape