# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import mindspore.nn as nn from mindspore.ops import operations as P class AlexNet(nn.Cell): def __init__(self, num_classes=10): super(AlexNet, self).__init__() self.batch_size = 32 self.conv1 = nn.Conv2d(3, 96, 11, stride=4, pad_mode="valid") self.conv2 = nn.Conv2d(96, 256, 5, stride=1, pad_mode="same") self.conv3 = nn.Conv2d(256, 384, 3, stride=1, pad_mode="same") self.conv4 = nn.Conv2d(384, 384, 3, stride=1, pad_mode="same") self.conv5 = nn.Conv2d(384, 256, 3, stride=1, pad_mode="same") self.relu = P.ReLU() self.max_pool2d = nn.MaxPool2d(kernel_size=3, stride=2) self.flatten = nn.Flatten() self.fc1 = nn.Dense(66256, 4096) self.fc2 = nn.Dense(4096, 4096) self.fc3 = nn.Dense(4096, num_classes) def construct(self, x): x = self.conv1(x) x = self.relu(x) x = self.max_pool2d(x) x = self.conv2(x) x = self.relu(x) x = self.max_pool2d(x) x = self.conv3(x) x = self.relu(x) x = self.conv4(x) x = self.relu(x) x = self.conv5(x) x = self.relu(x) x = self.max_pool2d(x) x = self.flatten(x) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) x = self.relu(x) x = self.fc3(x) return x