# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ network config setting, will be used in dataset.py, run_pretrain.py """ from easydict import EasyDict as edict import mindspore.common.dtype as mstype from .bert_model import BertConfig cfg = edict({ 'bert_network': 'base', 'loss_scale_value': 65536, 'scale_factor': 2, 'scale_window': 1000, 'optimizer': 'Lamb', 'AdamWeightDecay': edict({ 'learning_rate': 3e-5, 'end_learning_rate': 1e-10, 'power': 5.0, 'weight_decay': 1e-5, 'eps': 1e-6, 'warmup_steps': 10000, }), 'Lamb': edict({ 'learning_rate': 3e-5, 'end_learning_rate': 1e-10, 'power': 10.0, 'warmup_steps': 10000, 'weight_decay': 0.01, 'eps': 1e-6, }), 'Momentum': edict({ 'learning_rate': 2e-5, 'momentum': 0.9, }), }) ''' Including two kinds of network: \ base: Goole BERT-base(the base version of BERT model). large: BERT-NEZHA(a Chinese pretrained language model developed by Huawei, which introduced a improvement of \ Functional Relative Posetional Encoding as an effective positional encoding scheme). ''' if cfg.bert_network == 'base': bert_net_cfg = BertConfig( batch_size=32, seq_length=128, vocab_size=21128, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, use_relative_positions=False, input_mask_from_dataset=True, token_type_ids_from_dataset=True, dtype=mstype.float32, compute_type=mstype.float16 ) if cfg.bert_network == 'nezha': bert_net_cfg = BertConfig( batch_size=32, seq_length=128, vocab_size=21128, hidden_size=1024, num_hidden_layers=24, num_attention_heads=16, intermediate_size=4096, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, use_relative_positions=True, input_mask_from_dataset=True, token_type_ids_from_dataset=True, dtype=mstype.float32, compute_type=mstype.float16 ) if cfg.bert_network == 'large': bert_net_cfg = BertConfig( batch_size=16, seq_length=512, vocab_size=30522, hidden_size=1024, num_hidden_layers=24, num_attention_heads=16, intermediate_size=4096, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, use_relative_positions=False, input_mask_from_dataset=True, token_type_ids_from_dataset=True, dtype=mstype.float32, compute_type=mstype.float16, enable_fused_layernorm=True )