# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.nn import TrainOneStepCell, WithLossCell from mindspore.nn.optim import Momentum context.set_context(mode=context.GRAPH_MODE, device_target="GPU") class AlexNet(nn.Cell): def __init__(self, num_classes=10): super(AlexNet, self).__init__() self.batch_size = 32 self.conv1 = nn.Conv2d(3, 96, 11, stride=4, pad_mode="valid") self.conv2 = nn.Conv2d(96, 256, 5, stride=1, pad_mode="same") self.conv3 = nn.Conv2d(256, 384, 3, stride=1, pad_mode="same") self.conv4 = nn.Conv2d(384, 384, 3, stride=1, pad_mode="same") self.conv5 = nn.Conv2d(384, 256, 3, stride=1, pad_mode="same") self.relu = nn.ReLU() self.max_pool2d = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode="valid") self.flatten = nn.Flatten() self.fc1 = nn.Dense(6 * 6 * 256, 4096) self.fc2 = nn.Dense(4096, 4096) self.fc3 = nn.Dense(4096, num_classes) def construct(self, x): x = self.conv1(x) x = self.relu(x) x = self.max_pool2d(x) x = self.conv2(x) x = self.relu(x) x = self.max_pool2d(x) x = self.conv3(x) x = self.relu(x) x = self.conv4(x) x = self.relu(x) x = self.conv5(x) x = self.relu(x) x = self.max_pool2d(x) x = self.flatten(x) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) x = self.relu(x) x = self.fc3(x) return x @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_trainTensor(num_classes=10, epoch=15, batch_size=32): net = AlexNet(num_classes) lr = 0.1 momentum = 0.9 optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, momentum, weight_decay=0.0001) criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') net_with_criterion = WithLossCell(net, criterion) train_network = TrainOneStepCell(net_with_criterion, optimizer) train_network.set_train() losses = [] for i in range(0, epoch): data = Tensor(np.ones([batch_size, 3, 227, 227]).astype(np.float32) * 0.01) label = Tensor(np.ones([batch_size]).astype(np.int32)) loss = train_network(data, label).asnumpy() losses.append(loss) assert losses[-1] < 0.01