# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore import amp from mindspore.nn import Dense from mindspore.nn import TrainOneStepCell, WithLossCell from mindspore.nn.cell import Cell from mindspore.nn.layer.basic import Flatten from mindspore.nn.layer.conv import Conv2d from mindspore.nn.layer.normalization import BatchNorm2d from mindspore.nn.layer.pooling import MaxPool2d from mindspore.nn.optim import Momentum from mindspore.ops import operations as P from mindspore.ops.operations import Add context.set_context(mode=context.GRAPH_MODE, device_target="GPU") def random_normal_init(shape, mean=0.0, stddev=0.01, seed=None): init_value = np.ones(shape).astype(np.float32) * 0.01 return Tensor(init_value) def variance_scaling_raw(shape): variance_scaling_value = np.ones(shape).astype(np.float32) * 0.01 return Tensor(variance_scaling_value) def weight_variable_0(shape): zeros = np.zeros(shape).astype(np.float32) return Tensor(zeros) def weight_variable_1(shape): ones = np.ones(shape).astype(np.float32) return Tensor(ones) def conv3x3(in_channels, out_channels, stride=1, padding=1): """3x3 convolution """ weight_shape = (out_channels, in_channels, 3, 3) weight = variance_scaling_raw(weight_shape) return Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, weight_init=weight, has_bias=False, pad_mode="same") def conv1x1(in_channels, out_channels, stride=1, padding=0): """1x1 convolution""" weight_shape = (out_channels, in_channels, 1, 1) weight = variance_scaling_raw(weight_shape) return Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, weight_init=weight, has_bias=False, pad_mode="same") def conv7x7(in_channels, out_channels, stride=1, padding=0): """1x1 convolution""" weight_shape = (out_channels, in_channels, 7, 7) weight = variance_scaling_raw(weight_shape) return Conv2d(in_channels, out_channels, kernel_size=7, stride=stride, weight_init=weight, has_bias=False, pad_mode="same") def bn_with_initialize(out_channels): shape = (out_channels) mean = weight_variable_0(shape) var = weight_variable_1(shape) beta = weight_variable_0(shape) gamma = weight_variable_1(shape) bn = BatchNorm2d(out_channels, momentum=0.1, eps=0.0001, gamma_init=gamma, beta_init=beta, moving_mean_init=mean, moving_var_init=var) return bn def bn_with_initialize_last(out_channels): shape = (out_channels) mean = weight_variable_0(shape) var = weight_variable_1(shape) beta = weight_variable_0(shape) gamma = weight_variable_0(shape) bn = BatchNorm2d(out_channels, momentum=0.1, eps=0.0001, gamma_init=gamma, beta_init=beta, moving_mean_init=mean, moving_var_init=var) return bn def fc_with_initialize(input_channels, out_channels): weight_shape = (out_channels, input_channels) bias_shape = (out_channels) weight = random_normal_init(weight_shape) bias = weight_variable_0(bias_shape) return Dense(input_channels, out_channels, weight, bias) class ResidualBlock(Cell): expansion = 4 def __init__(self, in_channels, out_channels, stride=1, down_sample=False): super(ResidualBlock, self).__init__() out_chls = out_channels // self.expansion self.conv1 = conv1x1(in_channels, out_chls, stride=1, padding=0) self.bn1 = bn_with_initialize(out_chls) self.conv2 = conv3x3(out_chls, out_chls, stride=stride, padding=1) self.bn2 = bn_with_initialize(out_chls) self.conv3 = conv1x1(out_chls, out_channels, stride=1, padding=0) self.bn3 = bn_with_initialize_last(out_channels) self.relu = P.ReLU() self.add = Add() def construct(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) out = self.add(out, identity) out = self.relu(out) return out class ResidualBlockWithDown(Cell): expansion = 4 def __init__(self, in_channels, out_channels, stride=1, down_sample=False): super(ResidualBlockWithDown, self).__init__() out_chls = out_channels // self.expansion self.conv1 = conv1x1(in_channels, out_chls, stride=1, padding=0) self.bn1 = bn_with_initialize(out_chls) self.conv2 = conv3x3(out_chls, out_chls, stride=stride, padding=1) self.bn2 = bn_with_initialize(out_chls) self.conv3 = conv1x1(out_chls, out_channels, stride=1, padding=0) self.bn3 = bn_with_initialize_last(out_channels) self.relu = P.ReLU() self.downSample = down_sample self.conv_down_sample = conv1x1( in_channels, out_channels, stride=stride, padding=0) self.bn_down_sample = bn_with_initialize(out_channels) self.add = Add() def construct(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) identity = self.conv_down_sample(identity) identity = self.bn_down_sample(identity) out = self.add(out, identity) out = self.relu(out) return out class MakeLayer0(Cell): def __init__(self, block, layer_num, in_channels, out_channels, stride): super(MakeLayer0, self).__init__() self.a = ResidualBlockWithDown( in_channels, out_channels, stride=1, down_sample=True) self.b = block(out_channels, out_channels, stride=stride) self.c = block(out_channels, out_channels, stride=1) def construct(self, x): x = self.a(x) x = self.b(x) x = self.c(x) return x class MakeLayer1(Cell): def __init__(self, block, layer_num, in_channels, out_channels, stride): super(MakeLayer1, self).__init__() self.a = ResidualBlockWithDown( in_channels, out_channels, stride=stride, down_sample=True) self.b = block(out_channels, out_channels, stride=1) self.c = block(out_channels, out_channels, stride=1) self.d = block(out_channels, out_channels, stride=1) def construct(self, x): x = self.a(x) x = self.b(x) x = self.c(x) x = self.d(x) return x class MakeLayer2(Cell): def __init__(self, block, layer_num, in_channels, out_channels, stride): super(MakeLayer2, self).__init__() self.a = ResidualBlockWithDown( in_channels, out_channels, stride=stride, down_sample=True) self.b = block(out_channels, out_channels, stride=1) self.c = block(out_channels, out_channels, stride=1) self.d = block(out_channels, out_channels, stride=1) self.e = block(out_channels, out_channels, stride=1) self.f = block(out_channels, out_channels, stride=1) def construct(self, x): x = self.a(x) x = self.b(x) x = self.c(x) x = self.d(x) x = self.e(x) x = self.f(x) return x class MakeLayer3(Cell): def __init__(self, block, layer_num, in_channels, out_channels, stride): super(MakeLayer3, self).__init__() self.a = ResidualBlockWithDown( in_channels, out_channels, stride=stride, down_sample=True) self.b = block(out_channels, out_channels, stride=1) self.c = block(out_channels, out_channels, stride=1) def construct(self, x): x = self.a(x) x = self.b(x) x = self.c(x) return x class ResNet(Cell): def __init__(self, block, layer_num, num_classes=100): super(ResNet, self).__init__() self.conv1 = conv7x7(3, 64, stride=2, padding=3) self.bn1 = bn_with_initialize(64) self.relu = P.ReLU() self.maxpool = MaxPool2d(kernel_size=3, stride=2, pad_mode="same") self.layer1 = MakeLayer0( block, layer_num[0], in_channels=64, out_channels=256, stride=1) self.layer2 = MakeLayer1( block, layer_num[1], in_channels=256, out_channels=512, stride=2) self.layer3 = MakeLayer2( block, layer_num[2], in_channels=512, out_channels=1024, stride=2) self.layer4 = MakeLayer3( block, layer_num[3], in_channels=1024, out_channels=2048, stride=2) self.pool = nn.AvgPool2d(7, 1) self.fc = fc_with_initialize(512 * block.expansion, num_classes) self.flatten = Flatten() def construct(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.pool(x) x = self.flatten(x) x = self.fc(x) return x def resnet50(num_classes): return ResNet(ResidualBlock, [3, 4, 6, 3], num_classes) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_trainTensor(num_classes=10, epoch=8, batch_size=1): net = resnet50(num_classes) lr = 0.1 momentum = 0.9 optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, momentum) criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') net_with_criterion = WithLossCell(net, criterion) train_network = TrainOneStepCell( net_with_criterion, optimizer) # optimizer train_network.set_train() losses = [] for i in range(0, epoch): data = Tensor(np.ones([batch_size, 3, 224, 224] ).astype(np.float32) * 0.01) label = Tensor(np.ones([batch_size]).astype(np.int32)) loss = train_network(data, label) losses.append(loss) assert (losses[-1].asnumpy() < 1) @pytest.mark.level2 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_trainTensor_big_batchSize(num_classes=10, epoch=8, batch_size=338): net = resnet50(num_classes) lr = 0.1 momentum = 0.9 optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, momentum) criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') net_with_criterion = WithLossCell(net, criterion) train_network = TrainOneStepCell( net_with_criterion, optimizer) # optimizer train_network.set_train() losses = [] for i in range(0, epoch): data = Tensor(np.ones([batch_size, 3, 224, 224] ).astype(np.float32) * 0.01) label = Tensor(np.ones([batch_size]).astype(np.int32)) loss = train_network(data, label) losses.append(loss) assert (losses[-1].asnumpy() < 1) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_trainTensor_amp(num_classes=10, epoch=18, batch_size=16): net = resnet50(num_classes) lr = 0.1 momentum = 0.9 optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, momentum) criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') train_network = amp.build_train_network( net, optimizer, criterion, level="O2") train_network.set_train() losses = [] for i in range(0, epoch): data = Tensor(np.ones([batch_size, 3, 224, 224] ).astype(np.float32) * 0.01) label = Tensor(np.ones([batch_size]).astype(np.int32)) loss = train_network(data, label) losses.append(loss) assert (losses[-1][0].asnumpy() < 1) assert not losses[-1][1].asnumpy() assert (losses[-1][2].asnumpy() > 1)