# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import mindspore.context as context import mindspore.nn as nn import mindspore.common.dtype as mstype from mindspore import Tensor from mindspore.ops import operations as P context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") class Net(nn.Cell): def __init__(self, offset): super(Net, self).__init__() self.embedding = P.EmbeddingLookup() self.offset = offset def construct(self, param, index): return self.embedding(param, index, self.offset) def test_embedding_lookup_sparse(): params = Tensor(np.array([[8, 9], [10, 11], [12, 13], [14, 15]]), mstype.int32) indices = Tensor(np.array([[5, 2], [8, 5]]), mstype.int32) offset = 4 embedding = Net(offset) out = embedding(params, indices) assert(out.asnumpy() == [[[10, 11], [0, 0]], [[0, 0], [10, 11]]]).all()