# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P context.set_context(mode=context.GRAPH_MODE, device_target="CPU") class NetArgminWithValue(nn.Cell): def __init__(self, axis=0, keep_dims=False): super(NetArgminWithValue, self).__init__() self.argmin = P.ArgMinWithValue(axis=axis, keep_dims=keep_dims) def construct(self, x): return self.argmin(x) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_argminwithvalue_fp32(): x = np.array([[1., 20., 5.], [67., 8., 9.], [130., 24., 15.], [-0.5, 25, 100]]).astype(np.float32) argmin_a0 = NetArgminWithValue(axis=0, keep_dims=False) output0, output1 = argmin_a0(Tensor(x)) expect0 = np.array([3, 1, 0]).astype(np.int32) expect1 = np.array([-0.5, 8., 5.]).astype(np.float32) error = np.ones(shape=expect1.shape) * 1.0e-6 assert np.all(output0.asnumpy() == expect0) assert np.all(np.abs(output1.asnumpy() - expect1) < error) argmin_a0k = NetArgminWithValue(axis=0, keep_dims=True) output0, output1 = argmin_a0k(Tensor(x)) expect0 = np.array([[3, 1, 0]]).astype(np.int32) expect1 = np.array([[-0.5, 8., 5.]]).astype(np.float32) error = np.ones(shape=expect1.shape) * 1.0e-6 assert np.all(output0.asnumpy() == expect0) assert np.all(np.abs(output1.asnumpy() - expect1) < error) argmin_a1 = NetArgminWithValue(axis=1, keep_dims=False) output0, output1 = argmin_a1(Tensor(x)) expect0 = np.array([0, 1, 2, 0]).astype(np.int32) expect1 = np.array([1., 8., 15., -0.5]).astype(np.float32) error = np.ones(shape=expect1.shape) * 1.0e-6 assert np.all(output0.asnumpy() == expect0) assert np.all(np.abs(output1.asnumpy() - expect1) < error) argmin_a1k = NetArgminWithValue(axis=-1, keep_dims=True) output0, output1 = argmin_a1k(Tensor(x)) expect0 = np.array([[0], [1], [2], [0]]).astype(np.int32) expect1 = np.array([[1.], [8.], [15.], [-0.5]]).astype(np.float32) error = np.ones(shape=expect1.shape) * 1.0e-6 assert np.all(output0.asnumpy() == expect0) assert np.all(np.abs(output1.asnumpy() - expect1) < error) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_argminwithvalue_fp16(): x = np.array([[1., 20., 5.], [67., 8., 9.], [130., 24., 15.], [-0.5, 25, 100]]).astype(np.float16) argmin_a0 = NetArgminWithValue(axis=0, keep_dims=False) output0, output1 = argmin_a0(Tensor(x)) expect0 = np.array([3, 1, 0]).astype(np.int32) expect1 = np.array([-0.5, 8., 5.]).astype(np.float16) error = np.ones(shape=expect1.shape) * 1.0e-6 assert np.all(output0.asnumpy() == expect0) assert np.all(np.abs(output1.asnumpy() - expect1) < error) argmin_a0k = NetArgminWithValue(axis=0, keep_dims=True) output0, output1 = argmin_a0k(Tensor(x)) expect0 = np.array([[3, 1, 0]]).astype(np.int32) expect1 = np.array([[-0.5, 8., 5.]]).astype(np.float16) error = np.ones(shape=expect1.shape) * 1.0e-6 assert np.all(output0.asnumpy() == expect0) assert np.all(np.abs(output1.asnumpy() - expect1) < error) argmin_a1 = NetArgminWithValue(axis=1, keep_dims=False) output0, output1 = argmin_a1(Tensor(x)) expect0 = np.array([0, 1, 2, 0]).astype(np.int32) expect1 = np.array([1., 8., 15., -0.5]).astype(np.float16) error = np.ones(shape=expect1.shape) * 1.0e-6 assert np.all(output0.asnumpy() == expect0) assert np.all(np.abs(output1.asnumpy() - expect1) < error) argmin_a1k = NetArgminWithValue(axis=-1, keep_dims=True) output0, output1 = argmin_a1k(Tensor(x)) expect0 = np.array([[0], [1], [2], [0]]).astype(np.int32) expect1 = np.array([[1.], [8.], [15.], [-0.5]]).astype(np.float16) error = np.ones(shape=expect1.shape) * 1.0e-6 assert np.all(output0.asnumpy() == expect0) assert np.all(np.abs(output1.asnumpy() - expect1) < error) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_argminwithvalue_tensor(): prop = 100 if np.random.random() > 0.5 else -100 x = np.random.randn(3, 4, 5, 6).astype(np.float16) * prop argmin_a0 = NetArgminWithValue(axis=-2, keep_dims=False) output0, output1 = argmin_a0(Tensor(x)) expect0 = np.argmin(x, axis=-2) expect1 = np.min(x, axis=-2).astype(np.float16) error = np.ones(shape=expect1.shape) * 1.0e-6 assert np.all(output0.asnumpy() == expect0) assert np.all(np.abs(output1.asnumpy() - expect1) < error)