# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.common.api import ms_function from mindspore.ops.composite import GradOperation context.set_context(mode=context.GRAPH_MODE, device_target='CPU') class Grad(nn.Cell): def __init__(self, network): super(Grad, self).__init__() self.grad = GradOperation(get_all=True, sens_param=True) self.network = network @ms_function def construct(self, input_, output_grad): return self.grad(self.network)(input_, output_grad) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_net(): x = np.arange(1 * 1 * 6 * 6).reshape((1, 1, 6, 6)).astype(np.float32) net = nn.AvgPool2d(kernel_size=3, stride=2, pad_mode='valid') out = net(Tensor(x)) out_shape = out.asnumpy().shape sens = np.arange(int(np.prod(out_shape))).reshape(out_shape).astype(np.float32) backword_net = Grad(net) output = backword_net(Tensor(x), Tensor(sens)) print(len(output)) print(output[0].asnumpy())