# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context from mindspore.common.tensor import Tensor from mindspore.nn import BatchNorm2d from mindspore.nn import Cell from mindspore.ops import composite as C class Batchnorm_Net(Cell): def __init__(self, c, weight, bias, moving_mean, moving_var_init): super(Batchnorm_Net, self).__init__() self.bn = BatchNorm2d(c, eps=0.00001, momentum=0.1, beta_init=bias, gamma_init=weight, moving_mean_init=moving_mean, moving_var_init=moving_var_init) def construct(self, input_data): x = self.bn(input_data) return x class Grad(Cell): def __init__(self, network): super(Grad, self).__init__() self.grad = C.GradOperation(get_all=True, sens_param=True) self.network = network def construct(self, input_data, sens): gout = self.grad(self.network)(input_data, sens) return gout @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_train_forward(): x = np.array([[ [[1, 3, 3, 5], [2, 4, 6, 8], [3, 6, 7, 7], [4, 3, 8, 2]], [[5, 7, 6, 3], [3, 5, 6, 7], [9, 4, 2, 5], [7, 5, 8, 1]]]]).astype(np.float32) expect_output = np.array([[[[-0.6059, 0.3118, 0.3118, 1.2294], [-0.1471, 0.7706, 1.6882, 2.6059], [0.3118, 1.6882, 2.1471, 2.1471], [0.7706, 0.3118, 2.6059, -0.1471]], [[0.9119, 1.8518, 1.3819, -0.0281], [-0.0281, 0.9119, 1.3819, 1.8518], [2.7918, 0.4419, -0.4981, 0.9119], [1.8518, 0.9119, 2.3218, -0.9680]]]]).astype(np.float32) weight = np.ones(2).astype(np.float32) bias = np.ones(2).astype(np.float32) moving_mean = np.ones(2).astype(np.float32) moving_var_init = np.ones(2).astype(np.float32) error = np.ones(shape=[1, 2, 4, 4]) * 1.0e-4 context.set_context(mode=context.GRAPH_MODE, device_target="CPU") bn_net = Batchnorm_Net(2, Tensor(weight), Tensor(bias), Tensor(moving_mean), Tensor(moving_var_init)) bn_net.set_train() output = bn_net(Tensor(x)) diff = output.asnumpy() - expect_output assert np.all(diff < error) assert np.all(-diff < error) context.set_context(mode=context.GRAPH_MODE, device_target="CPU") bn_net = Batchnorm_Net(2, Tensor(weight), Tensor(bias), Tensor(moving_mean), Tensor(moving_var_init)) bn_net.set_train(False) output = bn_net(Tensor(x)) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_train_backward(): x = np.array([[ [[1, 3, 3, 5], [2, 4, 6, 8], [3, 6, 7, 7], [4, 3, 8, 2]], [[5, 7, 6, 3], [3, 5, 6, 7], [9, 4, 2, 5], [7, 5, 8, 1]]]]).astype(np.float32) grad = np.array([[ [[1, 2, 7, 1], [4, 2, 1, 3], [1, 6, 5, 2], [2, 4, 3, 2]], [[9, 4, 3, 5], [1, 3, 7, 6], [5, 7, 9, 9], [1, 4, 6, 8]]]]).astype(np.float32) expect_output = np.array([[[[-0.69126546, -0.32903028, 1.9651246, -0.88445705], [0.6369296, -0.37732816, -0.93275493, -0.11168876], [-0.7878612, 1.3614, 0.8542711, -0.52222186], [-0.37732816, 0.5886317, -0.11168876, -0.28073236]], [[1.6447213, -0.38968924, -1.0174079, -0.55067265], [-2.4305856, -1.1751484, 0.86250514, 0.5502673], [0.39576983, 0.5470243, 1.1715001, 1.6447213], [-1.7996241, -0.7051701, 0.7080077, 0.5437813]]]]).astype(np.float32) weight = Tensor(np.ones(2).astype(np.float32)) bias = Tensor(np.ones(2).astype(np.float32)) moving_mean = Tensor(np.ones(2).astype(np.float32)) moving_var_init = Tensor(np.ones(2).astype(np.float32)) error = np.ones(shape=[1, 2, 4, 4]) * 1.0e-6 context.set_context(mode=context.GRAPH_MODE, device_target="CPU") bn_net = Batchnorm_Net(2, weight, bias, moving_mean, moving_var_init) bn_net.set_train() bn_grad = Grad(bn_net) output = bn_grad(Tensor(x), Tensor(grad)) diff = output[0].asnumpy() - expect_output assert np.all(diff < error) assert np.all(-diff < error)