# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P context.set_context(mode=context.GRAPH_MODE, device_target='CPU') class OpNetWrapper(nn.Cell): def __init__(self, op): super(OpNetWrapper, self).__init__() self.op = op def construct(self, *inputs): return self.op(*inputs) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_notequal_int(): op = P.NotEqual() op_wrapper = OpNetWrapper(op) input_x = Tensor(np.array([1, 2, 3]).astype(np.int32)) input_y = Tensor(np.array([11, 2, 13]).astype(np.int32)) outputs = op_wrapper(input_x, input_y) print(outputs) assert np.allclose(outputs.asnumpy(), (True, False, True)) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_notequal_float(): op = P.NotEqual() op_wrapper = OpNetWrapper(op) input_x = Tensor(np.array([1, 2, 3]).astype(np.float32)) input_y = Tensor(np.array([-1, 0, 3]).astype(np.float32)) outputs = op_wrapper(input_x, input_y) print(outputs) assert np.allclose(outputs.asnumpy(), (True, True, False)) if __name__ == '__main__': test_notequal_int() test_notequal_float()