# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.ops = P.Pow() def construct(self, x, y): return self.ops(x, y) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_net(): x0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32) y0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32) x1_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32) y1_np = np.array(3).astype(np.float32) x0 = Tensor(x0_np) y0 = Tensor(y0_np) x1 = Tensor(x1_np) y1 = Tensor(y1_np) context.set_context(mode=context.GRAPH_MODE, device_target='CPU') net = Net() out = net(x0, y0).asnumpy() expect = np.power(x0_np, y0_np) assert np.all(out == expect) assert out.shape == expect.shape out = net(x1, y1).asnumpy() expect = np.power(x1_np, y1_np) assert np.all(out == expect) assert out.shape == expect.shape