# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ from typing import List from random import sample import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import PrimitiveWithInfer, prim_attr_register from mindspore._checkparam import Validator as validator from mindspore.common import dtype as mstype import numpy as np import pandas as pd import pytest context.set_context(mode=context.GRAPH_MODE, device_target="CPU") class Rank(PrimitiveWithInfer): """ Shift op frontend implementation """ # size_t axis_{0}; # rank::Method method_{rank::MethodNotDefined}; # rank::NaOption option_{rank::OptionNotDefined}; # bool ascending_{true}; # bool pct_{false}; @prim_attr_register def __init__(self, axis: int, method: str, na_option: str, ascending: bool, pct: bool): """Initialize Sort""" self.axis = validator.check_value_type("axis", axis, [int], self.name) self.method = validator.check_value_type("method", method, [str], self.name) self.na_option = validator.check_value_type("na_option", na_option, [str], self.name) self.ascending = validator.check_value_type("ascending", ascending, [bool], self.name) self.pct = validator.check_value_type("pct", pct, [bool], self.name) self.init_prim_io_names(inputs=['x'], outputs=['output']) def __infer__(self, x): out_shapes = x['shape'] return { 'shape': tuple(out_shapes), 'dtype': mstype.float32, 'value': None } class RankNet(nn.Cell): def __init__(self, axis: int, method: str, na_option: str, ascending: bool, pct: bool): super(RankNet, self).__init__() self.rank = Rank(axis, method, na_option, ascending, pct) def construct(self, x): return self.rank(x) def pandas_rank(arr, **kwargs): ser = pd.DataFrame(arr) result = ser.rank(**kwargs) return result.to_numpy() @pytest.mark.parametrize('shape', [(10,)]) @pytest.mark.parametrize('dtype', [np.float32, np.float64, np.int32, np.int64]) @pytest.mark.parametrize('method', ['dense', 'first', 'max', 'min', 'average']) @pytest.mark.parametrize('na_option', ["keep", "top", "bottom"]) @pytest.mark.parametrize('ascending', [True, False]) @pytest.mark.parametrize('pct', [False, True]) def test_rank_1d(shape: List[int], dtype, method: str, ascending: bool, pct: bool, na_option: str): np.random.seed(0) if dtype in (np.int32, np.int64): arr = np.random.randint(0, 100, size=shape).astype(dtype) else: arr = np.random.random(size=shape).astype(dtype) arr.flat[sample(range(arr.size), int(arr.size / 10))] = np.nan pd_result = pandas_rank(arr, method=method, ascending=ascending, pct=pct, na_option=na_option).flatten() rank = RankNet(0, method=method, ascending=ascending, pct=pct, na_option=na_option) mind_result = rank(Tensor(arr)).asnumpy() print('arr: \n', arr, arr.dtype, arr.shape) print('pandas: \n', pd_result, pd_result.dtype, pd_result.shape) print('mind: \n', mind_result, mind_result.dtype, mind_result.shape) print(f'method: {method}, ascending: {ascending}, pct: {pct} na_option: {na_option}') assert np.allclose(pd_result, mind_result, equal_nan=True) @pytest.mark.parametrize('shape', [(5, 6)]) @pytest.mark.parametrize('dtype', [np.float32, np.float64, np.int32, np.int64]) @pytest.mark.parametrize('method', ['dense', 'first', 'max', 'min', 'average']) @pytest.mark.parametrize('na_option', ["keep", "top", "bottom"]) @pytest.mark.parametrize('axis', [0, 1]) @pytest.mark.parametrize('ascending', [True, False]) @pytest.mark.parametrize('pct', [False, True]) def test_rank_2d(shape: List[int], dtype, method: str, ascending: bool, pct: bool, axis: int, na_option: str): np.random.seed(0) if dtype in (np.int32, np.int64): arr = np.random.randint(0, 100, size=shape).astype(dtype) else: arr = np.random.random(size=shape).astype(dtype) arr.flat[sample(range(arr.size), int(arr.size / 10))] = np.nan pd_result = pandas_rank(arr, method=method, ascending=ascending, pct=pct, na_option=na_option, axis=axis) rank = RankNet(axis=axis, method=method, ascending=ascending, pct=pct, na_option=na_option) mind_result = rank(Tensor(arr)).asnumpy() print('arr: \n', arr, arr.dtype, arr.shape) print('pandas: \n', pd_result, pd_result.dtype, pd_result.shape) print('mind: \n', mind_result, mind_result.dtype, mind_result.shape) print(f'axis: {axis}, method: {method}, ascending: {ascending}, pct: {pct} na_option: {na_option}') assert np.allclose(pd_result, mind_result, equal_nan=True)