# Copyright 2020-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import pytest import numpy as np from mindspore import Tensor from mindspore.ops import operations as P import mindspore.nn as nn import mindspore.context as context from mindspore.common.api import ms_function context.set_context(mode=context.PYNATIVE_MODE, device_target="CPU") class NetReduce(nn.Cell): def __init__(self): super(NetReduce, self).__init__() self.axis0 = 0 self.axis1 = 1 self.axis2 = -1 self.axis3 = (0, 1) self.axis4 = (0, 1, 2) self.axis5 = (-1,) self.axis6 = () self.reduce_mean = P.ReduceMean(False) self.reduce_sum = P.ReduceSum(False) self.reduce_max = P.ReduceMax(False) self.reduce_min = P.ReduceMin(False) @ms_function def construct(self, indice): return (self.reduce_mean(indice, self.axis0), self.reduce_mean(indice, self.axis1), self.reduce_mean(indice, self.axis2), self.reduce_mean(indice, self.axis3), self.reduce_mean(indice, self.axis4), self.reduce_sum(indice, self.axis0), self.reduce_sum(indice, self.axis2), self.reduce_max(indice, self.axis0), self.reduce_max(indice, self.axis2), self.reduce_max(indice, self.axis5), self.reduce_max(indice, self.axis6), self.reduce_min(indice, self.axis0), self.reduce_min(indice, self.axis1), self.reduce_min(indice, self.axis2), self.reduce_min(indice, self.axis3), self.reduce_min(indice, self.axis4), self.reduce_min(indice, self.axis5), self.reduce_min(indice, self.axis6)) class NetReduceLogic(nn.Cell): def __init__(self): super(NetReduceLogic, self).__init__() self.axis0 = 0 self.axis1 = -1 self.axis2 = (0, 1, 2) self.axis3 = () self.reduce_all = P.ReduceAll(False) self.reduce_any = P.ReduceAny(False) @ms_function def construct(self, indice): return (self.reduce_all(indice, self.axis0), self.reduce_all(indice, self.axis1), self.reduce_all(indice, self.axis2), self.reduce_all(indice, self.axis3), self.reduce_any(indice, self.axis0), self.reduce_any(indice, self.axis1), self.reduce_any(indice, self.axis2), self.reduce_any(indice, self.axis3),) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_reduce(): reduce = NetReduce() indice = Tensor(np.array([ [[0., 2., 1., 4., 0., 2.], [3., 1., 2., 2., 4., 0.]], [[2., 0., 1., 5., 0., 1.], [1., 0., 0., 4., 4., 3.]], [[4., 1., 4., 0., 0., 0.], [2., 5., 1., 0., 1., 3.]] ]).astype(np.float32)) output = reduce(indice) print(output[0]) print(output[1]) print(output[2]) print(output[3]) print(output[4]) print(output[5]) print(output[6]) print(output[7]) print(output[8]) print(output[9]) print(output[10]) print(output[11]) print(output[12]) print(output[13]) print(output[14]) print(output[15]) print(output[16]) print(output[17]) expect_0 = np.array([[2., 1., 2., 3., 0., 1], [2., 2., 1., 2., 3., 2.]]).astype(np.float32) expect_1 = np.array([[1.5, 1.5, 1.5, 3., 2., 1.], [1.5, 0., 0.5, 4.5, 2., 2.], [3., 3., 2.5, 0., 0.5, 1.5]]).astype( np.float32) expect_2 = np.array([[1.5, 2.], [1.5, 2.], [1.5, 2.]]).astype(np.float32) expect_3 = np.array([2, 1.5, 1.5, 2.5, 1.5, 1.5]).astype(np.float32) expect_4 = np.array([1.75]).astype(np.float32) expect_5 = np.array([[6., 3., 6., 9., 0., 3.], [6., 6., 3., 6., 9., 6.]]).astype(np.float32) expect_6 = np.array([[9., 12.], [9., 12.], [9., 12.]]).astype(np.float32) expect_7 = np.array([[4., 2., 4., 5., 0., 2.], [3., 5., 2., 4., 4., 3.]]).astype(np.float32) expect_8 = np.array([[4., 4.], [5., 4.], [4., 5.]]).astype(np.float32) expect_9 = np.array([[0., 0., 1., 0., 0., 0.], [1., 0., 0., 0., 1., 0.]]).astype(np.float32) expect_10 = np.array([[0., 1., 1., 2., 0., 0.], [1., 0., 0., 4., 0., 1.], [2., 1., 1., 0., 0., 0.]]).astype( np.float32) expect_11 = np.array([[0., 0.], [0., 0.], [0., 0.]]).astype(np.float32) expect_12 = np.array([0., 0., 0., 0., 0., 0.]).astype(np.float32) assert (output[0].asnumpy() == expect_0).all() assert (output[1].asnumpy() == expect_1).all() assert (output[2].asnumpy() == expect_2).all() assert (output[3].asnumpy() == expect_3).all() assert (output[4].asnumpy() == expect_4).all() assert (output[5].asnumpy() == expect_5).all() assert (output[6].asnumpy() == expect_6).all() assert (output[7].asnumpy() == expect_7).all() assert (output[8].asnumpy() == expect_8).all() assert (output[9].asnumpy() == expect_8).all() assert (output[10].asnumpy() == 5.0).all() assert (output[11].asnumpy() == expect_9).all() assert (output[12].asnumpy() == expect_10).all() assert (output[13].asnumpy() == expect_11).all() assert (output[14].asnumpy() == expect_12).all() assert (output[15].asnumpy() == 0.0).all() assert (output[16].asnumpy() == expect_11).all() assert (output[17].asnumpy() == 0.0).all() @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_reduce_logic(): reduce_logic = NetReduceLogic() indice_bool = Tensor([[[False, True, True, True, False, True], [True, True, True, True, True, False]], [[True, False, True, True, False, True], [True, False, False, True, True, True]], [[True, True, True, False, False, False], [True, True, True, False, True, True]]]) output = reduce_logic(indice_bool) expect_all_1 = np.array([[False, False, True, False, False, False], [True, False, False, False, True, False]]) expect_all_2 = np.array([[False, False], [False, False], [False, False]]) expect_all_3 = False expect_all_4 = False expect_any_1 = np.array([[True, True, True, True, False, True], [True, True, True, True, True, True]]) expect_any_2 = np.array([[True, True], [True, True], [True, True]]) expect_any_3 = True expect_any_4 = True assert (output[0].asnumpy() == expect_all_1).all() assert (output[1].asnumpy() == expect_all_2).all() assert (output[2].asnumpy() == expect_all_3).all() assert (output[3].asnumpy() == expect_all_4).all() assert (output[4].asnumpy() == expect_any_1).all() assert (output[5].asnumpy() == expect_any_2).all() assert (output[6].asnumpy() == expect_any_3).all() assert (output[7].asnumpy() == expect_any_4).all() test_reduce() test_reduce_logic()