# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.common.parameter import Parameter from mindspore.common.initializer import initializer from mindspore.ops import operations as P context.set_context(mode=context.GRAPH_MODE, device_target="CPU") class NetCenteredRMSProp(nn.Cell): def __init__(self, lr, decay, momentum, epsilon, var, g, mg, rms, mom): super(NetCenteredRMSProp, self).__init__() self.rms_opt = P.ApplyCenteredRMSProp() self.lr = lr self.decay = decay self.momentum = momentum self.epsilon = epsilon self.var = var self.g = g self.mg = mg self.rms = rms self.mom = mom def construct(self): return self.rms_opt(self.var, self.mg, self.rms, self.mom, self.g, self.lr, self.decay, self.momentum, self.epsilon) class NetRMSProp(nn.Cell): def __init__(self, lr, decay, momentum, epsilon, var, g, mg, rms, mom): super(NetRMSProp, self).__init__() self.lr = lr self.decay = decay self.momentum = momentum self.epsilon = epsilon self.var = var self.g = g self.mg = mg self.rms = rms self.mom = mom self.rms_opt = P.ApplyRMSProp() def construct(self): return self.rms_opt(self.var, self.rms, self.mom, self.lr, self.g, self.decay, self.momentum, self.epsilon) def rmsprop_numpy(variable, gradients, mean_square, moment, learning_rate, decay, momentum, epsilon): mean_square = mean_square * decay + (1.0 - decay) * gradients * gradients moment = momentum * moment + learning_rate / np.sqrt(mean_square + epsilon) * gradients variable = variable - moment return variable, gradients, mean_square, moment def rmspropcented_numpy(variable, gradients, mean_gradients, mean_square, moment, learning_rate, decay, momentum, epsilon): mean_gradients = mean_gradients * decay + (1.0 - decay) * gradients mean_square = mean_square * decay + (1.0 - decay) * gradients * gradients moment = momentum * moment + learning_rate / np.sqrt( mean_square - mean_gradients * mean_gradients + epsilon) * gradients variable = variable - moment return variable, gradients, mean_gradients, mean_square, moment @pytest.mark.level0 @pytest.mark.platform_cpu @pytest.mark.env_onecard def test_rmsprop(): learning_rate, decay, momentum, epsilon, centered = [0.5, 0.8, 0.9, 1e-3, True] variable_np = np.array([1.0, 2.0], dtype=np.float32) gradients_np = np.array([0.1, 0.2], dtype=np.float32) mean_gradients_np = np.array([0.0, 0.0], dtype=np.float32) mean_square_np = np.array([epsilon, epsilon], dtype=np.float32) moment_np = np.array([0.0, 0.0], dtype=np.float32) variable = Tensor(variable_np) gradients = Tensor(gradients_np) mean_gradients = Tensor(mean_gradients_np) mean_square = Tensor(mean_square_np) moment = Tensor(moment_np) variable_ms = Parameter(initializer(variable, variable.shape), name='var') gradients_ms = Parameter(initializer(gradients, gradients.shape), name='grad') mean_gradients_ms = Parameter(initializer(mean_gradients, mean_gradients.shape), name='mg') mean_square_ms = Parameter(initializer(mean_square, mean_square.shape), name='msr') moment_ms = Parameter(initializer(moment, moment.shape), name='mom') if centered: variable_np, gradients_np, mean_gradients_np, mean_square_np, moment_np = \ rmspropcented_numpy(variable_np, gradients_np, mean_gradients_np, mean_square_np, moment_np, learning_rate, decay, momentum, epsilon) net = NetCenteredRMSProp(learning_rate, decay, momentum, epsilon, variable_ms, gradients_ms, mean_gradients_ms, mean_square_ms, moment_ms) _ = net() else: variable_np, gradients_np, mean_square_np, moment_np = \ rmsprop_numpy(variable_np, gradients_np, mean_square_np, moment_np, learning_rate, decay, momentum, epsilon) net = NetRMSProp(learning_rate, decay, momentum, epsilon, variable_ms, gradients_ms, mean_gradients_ms, mean_square_ms, moment_ms) _ = net() error = np.ones(shape=variable_np.shape) * 10e-6 diff = variable_ms.asnumpy() - variable_np assert np.all(diff < error) error = np.ones(shape=gradients_np.shape) * 10e-6 diff = gradients_ms.asnumpy() - gradients_np assert np.all(diff < error) error = np.ones(shape=mean_gradients_np.shape) * 10e-6 diff = mean_gradients_ms.asnumpy() - mean_gradients_np assert np.all(diff < error) error = np.ones(shape=mean_square_np.shape) * 10e-6 diff = mean_square_ms.asnumpy() - mean_square_np assert np.all(diff < error) error = np.ones(shape=moment_np.shape) * 10e-6 diff = moment_ms.asnumpy() - moment_np assert np.all(diff < error) @pytest.mark.level0 @pytest.mark.platform_cpu @pytest.mark.env_onecard def test_rmspropcenter(): learning_rate, decay, momentum, epsilon, centered = [0.1, 0.3, 0.9, 1.0, False] variable_np = np.array([1.0, 2.0], dtype=np.float32) gradients_np = np.array([0.1, 0.2], dtype=np.float32) mean_gradients_np = np.array([0.0, 0.0], dtype=np.float32) mean_square_np = np.array([epsilon, epsilon], dtype=np.float32) moment_np = np.array([0.0, 0.0], dtype=np.float32) variable = Tensor(variable_np) gradients = Tensor(gradients_np) mean_gradients = Tensor(mean_gradients_np) mean_square = Tensor(mean_square_np) moment = Tensor(moment_np) variable_ms = Parameter(initializer(variable, variable.shape), name='var') gradients_ms = Parameter(initializer(gradients, gradients.shape), name='grad') mean_gradients_ms = Parameter(initializer(mean_gradients, mean_gradients.shape), name='mg') mean_square_ms = Parameter(initializer(mean_square, mean_square.shape), name='msr') moment_ms = Parameter(initializer(moment, moment.shape), name='mom') if centered: variable_np, gradients_np, mean_gradients_np, mean_square_np, moment_np = \ rmspropcented_numpy(variable_np, gradients_np, mean_gradients_np, mean_square_np, moment_np, learning_rate, decay, momentum, epsilon) net = NetCenteredRMSProp(learning_rate, decay, momentum, epsilon, variable_ms, gradients_ms, mean_gradients_ms, mean_square_ms, moment_ms) _ = net() else: variable_np, gradients_np, mean_square_np, moment_np = \ rmsprop_numpy(variable_np, gradients_np, mean_square_np, moment_np, learning_rate, decay, momentum, epsilon) net = NetRMSProp(learning_rate, decay, momentum, epsilon, variable_ms, gradients_ms, mean_gradients_ms, mean_square_ms, moment_ms) _ = net() error = np.ones(shape=variable_np.shape) * 10e-6 diff = variable_ms.asnumpy() - variable_np assert np.all(diff < error) error = np.ones(shape=gradients_np.shape) * 10e-6 diff = gradients_ms.asnumpy() - gradients_np assert np.all(diff < error) error = np.ones(shape=mean_gradients_np.shape) * 10e-6 diff = mean_gradients_ms.asnumpy() - mean_gradients_np assert np.all(diff < error) error = np.ones(shape=mean_square_np.shape) * 10e-6 diff = mean_square_ms.asnumpy() - mean_square_np assert np.all(diff < error) error = np.ones(shape=moment_np.shape) * 10e-6 diff = moment_ms.asnumpy() - moment_np assert np.all(diff < error)