# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P class Net(nn.Cell): def __init__(self, _shape): super(Net, self).__init__() self.shape = _shape self.scatternd = P.ScatterNd() def construct(self, indices, update): return self.scatternd(indices, update, self.shape) def scatternd_net(indices, update, _shape, expect): scatternd = Net(_shape) output = scatternd(Tensor(indices), Tensor(update)) error = np.ones(shape=output.asnumpy().shape) * 1.0e-6 diff = output.asnumpy() - expect assert np.all(diff < error) assert np.all(-diff < error) def scatternd_positive(nptype): context.set_context(mode=context.GRAPH_MODE, device_target="CPU") arr_indices = np.array([[0, 1], [1, 1], [0, 1], [0, 1], [0, 1]]).astype(np.int32) arr_update = np.array([3.2, 1.1, 5.3, -2.2, -1.0]).astype(nptype) shape = (2, 2) expect = np.array([[0., 5.3], [0., 1.1]]).astype(nptype) scatternd_net(arr_indices, arr_update, shape, expect) arr_indices = np.array([[0, 1], [1, 1], [0, 1], [0, 1], [0, 1]]).astype(np.int64) arr_update = np.array([3.2, 1.1, 5.3, -2.2, -1.0]).astype(nptype) shape = (2, 2) expect = np.array([[0., 5.3], [0., 1.1]]).astype(nptype) scatternd_net(arr_indices, arr_update, shape, expect) def scatternd_negative(nptype): context.set_context(mode=context.GRAPH_MODE, device_target="CPU") arr_indices = np.array([[1, 0], [1, 1], [1, 0], [1, 0], [1, 0]]).astype(np.int32) arr_update = np.array([-13.4, -3.1, 5.1, -12.1, -1.0]).astype(nptype) shape = (2, 2) expect = np.array([[0., 0.], [-21.4, -3.1]]).astype(nptype) scatternd_net(arr_indices, arr_update, shape, expect) arr_indices = np.array([[1, 0], [1, 1], [1, 0], [1, 0], [1, 0]]).astype(np.int64) arr_update = np.array([-13.4, -3.1, 5.1, -12.1, -1.0]).astype(nptype) shape = (2, 2) expect = np.array([[0., 0.], [-21.4, -3.1]]).astype(nptype) scatternd_net(arr_indices, arr_update, shape, expect) def scatternd_positive_uint(nptype): context.set_context(mode=context.GRAPH_MODE, device_target="CPU") arr_indices = np.array([[0, 1], [1, 1], [0, 1], [0, 1], [0, 1]]).astype(np.int32) arr_update = np.array([3.2, 1.1, 5.3, 3.8, 1.2]).astype(nptype) shape = (2, 2) expect = np.array([[0., 12.], [0., 1.]]).astype(nptype) scatternd_net(arr_indices, arr_update, shape, expect) arr_indices = np.array([[0, 1], [1, 1], [0, 1], [0, 1], [0, 1]]).astype(np.int64) arr_update = np.array([3.2, 1.1, 5.3, 3.8, 1.2]).astype(nptype) shape = (2, 2) expect = np.array([[0., 12.], [0., 1.]]).astype(nptype) scatternd_net(arr_indices, arr_update, shape, expect) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatternd_float64(): scatternd_positive(np.float64) scatternd_negative(np.float64) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatternd_float32(): scatternd_positive(np.float32) scatternd_negative(np.float32) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatternd_int64(): scatternd_positive(np.int64) scatternd_negative(np.int64) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatternd_int16(): scatternd_positive(np.int16) scatternd_negative(np.int16) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatternd_uint64(): scatternd_positive_uint(np.uint64) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatternd_uint32(): scatternd_positive_uint(np.uint32) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatternd_uint16(): scatternd_positive_uint(np.uint16) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatternd_uint8(): scatternd_positive_uint(np.uint8)