# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P class NetArgminWithValue(nn.Cell): def __init__(self): super(NetArgminWithValue, self).__init__() axis1 = 0 axis2 = -1 self.argmin1 = P.ArgMinWithValue(axis1) self.argmin2 = P.ArgMinWithValue(axis2) self.argmin3 = P.ArgMinWithValue() def construct(self, x): return (self.argmin1(x), self.argmin2(x), self.argmin3(x)) class NetArgminWithValueBig(nn.Cell): def __init__(self, axis=0): super(NetArgminWithValueBig, self).__init__() self.argmin = P.ArgMinWithValue(axis) def construct(self, x): return self.argmin(x) def argminwithvalue_base(data_type): x = Tensor(np.array([[1., 20., 5.], [67., 8., 9.], [130., 24., 15.], [0.3, -0.4, -15.]]).astype(data_type)) expect1 = np.array([3, 3, 3]).astype(data_type) expect2 = np.array([0, 1, 2, 2]).astype(data_type) expect11 = np.array([0.3, -0.4, -15.]).astype(data_type) expect22 = np.array([1., 8., 15., -15.]).astype(data_type) context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") argmin = NetArgminWithValue() output = argmin(x) assert (output[0][0].asnumpy() == expect1).all() assert (output[0][1].asnumpy() == expect11).all() assert (output[1][0].asnumpy() == expect2).all() assert (output[1][1].asnumpy() == expect22).all() assert (output[2][0].asnumpy() == expect1).all() assert (output[2][1].asnumpy() == expect11).all() context.set_context(mode=context.GRAPH_MODE, device_target="GPU") argmin = NetArgminWithValue() output = argmin(x) assert (output[0][0].asnumpy() == expect1).all() assert (output[0][1].asnumpy() == expect11).all() assert (output[1][0].asnumpy() == expect2).all() assert (output[1][1].asnumpy() == expect22).all() assert (output[2][0].asnumpy() == expect1).all() assert (output[2][1].asnumpy() == expect11).all() def argminwithvalue_3d(data_type, shape_x): np.random.seed(2) x_np = np.random.random(shape_x).astype(data_type) x = Tensor(x_np) argmin = NetArgminWithValueBig(0) output = argmin(x) expect1 = np.argmin(x_np, axis=0) expect2 = np.minimum.reduce(x_np, 0) assert (output[0].asnumpy() == expect1).all() assert (output[1].asnumpy() == expect2).all() argmin = NetArgminWithValueBig(1) output = argmin(x) expect1 = np.argmin(x_np, axis=1) expect2 = np.minimum.reduce(x_np, 1) assert (output[0].asnumpy() == expect1).all() assert (output[1].asnumpy() == expect2).all() argmin = NetArgminWithValueBig(2) output = argmin(x) expect1 = np.argmin(x_np, axis=2) expect2 = np.minimum.reduce(x_np, 2) assert (output[0].asnumpy() == expect1).all() assert (output[1].asnumpy() == expect2).all() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_argminwithvalue_base_float32(): argminwithvalue_base(np.float32) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_argminwithvalue_base_float16(): argminwithvalue_base(np.float16) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_argminwithvalue_3d_float32(): shape_x = (2, 32, 256) context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") argminwithvalue_3d(np.float32, shape_x) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") argminwithvalue_3d(np.float32, shape_x) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_argminwithvalue_3d_float16(): shape_x = (2, 64, 128) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") argminwithvalue_3d(np.float16, shape_x) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_argminwithvalue_3d_big_float32(): shape_x = (128, 1024, 1) context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") argminwithvalue_3d(np.float32, shape_x) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") argminwithvalue_3d(np.float32, shape_x)