# Copyright 2020-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context from mindspore.common.tensor import Tensor from mindspore.ops import operations as P @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_broadcast(): context.set_context(mode=context.GRAPH_MODE, device_target='GPU') shape = (3, 4, 5, 6) x_np = np.random.rand(3, 1, 5, 1).astype(np.float32) output = P.BroadcastTo(shape)(Tensor(x_np)) expect = np.broadcast_to(x_np, shape) assert np.allclose(output.asnumpy(), expect) x1_np = np.random.rand(3, 1, 5, 1).astype(np.float16) output = P.BroadcastTo(shape)(Tensor(x1_np)) expect = np.broadcast_to(x1_np, shape) assert np.allclose(output.asnumpy(), expect) shape = (2, 3, 4, 5) x1_np = np.random.rand(4, 5).astype(np.float32) output = P.BroadcastTo(shape)(Tensor(x1_np)) expect = np.broadcast_to(x1_np, shape) assert np.allclose(output.asnumpy(), expect) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_broadcast_dyn_init(): """ Test running the op with -1's in the init shape to support varied inputs. """ context.set_context(mode=context.GRAPH_MODE, device_target='GPU') ms_shape = (-1, -1, 5, 6) np_shape = (3, 4, 5, 6) x_np = np.random.rand(3, 1, 5, 1).astype(np.float32) output = P.BroadcastTo(ms_shape)(Tensor(x_np)) expect = np.broadcast_to(x_np, np_shape) assert np.allclose(output.asnumpy(), expect) x1_np = np.random.rand(3, 1, 5, 1).astype(np.float16) output = P.BroadcastTo(ms_shape)(Tensor(x1_np)) expect = np.broadcast_to(x1_np, np_shape) assert np.allclose(output.asnumpy(), expect) ms_shape = (2, 3, -1, -1) np_shape = (2, 3, 4, 5) x1_np = np.random.rand(4, 5).astype(np.float32) output = P.BroadcastTo(ms_shape)(Tensor(x1_np)) expect = np.broadcast_to(x1_np, np_shape) assert np.allclose(output.asnumpy(), expect) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_broadcast_dyn_invalid_init(): """ Test running the op with -1's in the init shape in incorrect positions. Expected to fail. """ context.set_context(mode=context.GRAPH_MODE, device_target='GPU') ms_shape = (2, -1, 4, 5) x_np = np.random.rand(4, 5).astype(np.float32) with pytest.raises(ValueError): P.BroadcastTo(ms_shape)(Tensor(x_np)) context.set_context(mode=context.GRAPH_MODE, device_target='GPU') ms_shape = (-1, 1, -1, -1) x_np = np.random.rand(4, 5).astype(np.float32) with pytest.raises(ValueError): P.BroadcastTo(ms_shape)(Tensor(x_np))