# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P from mindspore.ops.operations import _inner_ops as inner class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.expand_dims = P.ExpandDims() def construct(self, tensor): return self.expand_dims(tensor, -1) class NetDynamic(nn.Cell): def __init__(self): super(NetDynamic, self).__init__() self.conv = inner.GpuConvertToDynamicShape() self.expand_dims = P.ExpandDims() def construct(self, x): x_conv = self.conv(x) return self.expand_dims(x_conv, -1) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_net_bool(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") x = np.random.randn(1, 16, 1, 1).astype(np.bool) net = NetDynamic() output = net(Tensor(x)) assert np.all(output.asnumpy() == np.expand_dims(x, -1)) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_net_int8(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") x = np.random.randn(1, 16, 1, 1).astype(np.int8) net = NetDynamic() output = net(Tensor(x)) assert np.all(output.asnumpy() == np.expand_dims(x, -1)) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_net_uint8(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") x = np.random.randn(1, 16, 1, 1).astype(np.uint8) net = Net() output = net(Tensor(x)) assert np.all(output.asnumpy() == np.expand_dims(x, -1)) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_net_int16(): context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") x = np.random.randn(1, 16, 1, 1).astype(np.int16) net = Net() output = net(Tensor(x)) assert np.all(output.asnumpy() == np.expand_dims(x, -1)) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_net_int32(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") x = np.random.randn(1, 16, 1, 1).astype(np.int32) net = Net() output = net(Tensor(x)) assert np.all(output.asnumpy() == np.expand_dims(x, -1)) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_net_int64(): context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") x = np.random.randn(1, 16, 1, 1).astype(np.int64) net = Net() output = net(Tensor(x)) assert np.all(output.asnumpy() == np.expand_dims(x, -1)) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_net_float16(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") x = np.random.randn(1, 16, 1, 1).astype(np.float16) net = Net() output = net(Tensor(x)) assert np.all(output.asnumpy() == np.expand_dims(x, -1)) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_net_float32(): context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") x = np.random.randn(1, 16, 1, 1).astype(np.float32) net = Net() output = net(Tensor(x)) assert np.all(output.asnumpy() == np.expand_dims(x, -1)) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_net_float64(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") x = np.random.randn(1, 16, 1, 1).astype(np.float64) net = Net() output = net(Tensor(x)) assert np.all(output.asnumpy() == np.expand_dims(x, -1))