# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context from mindspore.common.tensor import Tensor import mindspore.nn as nn from mindspore.ops.operations import _quant_ops as Q context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU', device_id=0) class Net(nn.Cell): def __init__(self, num_bits=8, quant_delay=0, symmetric=False, narrow_range=False, training=True): super(Net, self).__init__() self.fake_quant = Q.FakeQuantPerLayer(num_bits=num_bits, quant_delay=quant_delay, symmetric=symmetric, narrow_range=narrow_range, training=training) def construct(self, x, minq, maxq): return self.fake_quant(x, minq, maxq) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_fake_quant1(): # (8, false, 0.0f, 0.0f, TensorShape({2, 3}), # {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, # {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}); x = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0]).reshape(2, 3).astype(np.float32) min_val = np.array([0]).reshape(1).astype(np.float32) max_val = np.array([0]).reshape(1).astype(np.float32) expect = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0]).astype(np.float32) net = Net(num_bits=8, narrow_range=False) output = net(Tensor(x), Tensor(min_val), Tensor(max_val)) error = np.ones(shape=expect.shape) * 1.0e-5 diff = output.asnumpy().flatten() - expect print("output: ", output) print("expect: ", expect) assert np.all(np.abs(diff) < error) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_fake_quant2(): # 8, false, -10.0f, 53.75f, TensorShape({2, 3}), # {-10.1f, -10.0f, -9.9f, -9.75f, 53.75f, 53.8f}, # {-10.0f, -10.0f, -10.0f, -9.75f, 53.75f, 53.75f}); x = np.array([-10.1, -10.0, -9.9, -9.75, 53.75, 53.8]).reshape(2, 3).astype(np.float32) min_val = np.array([-10.0]).reshape(1).astype(np.float32) max_val = np.array([53.75]).reshape(1).astype(np.float32) expect = np.array([-10.0, -10.0, -10.0, -9.75, 53.75, 53.75]).astype(np.float32) net = Net(num_bits=8, narrow_range=False) output = net(Tensor(x), Tensor(min_val), Tensor(max_val)) error = np.ones(shape=expect.shape) * 1.0e-5 diff = output.asnumpy().flatten() - expect print("output: ", output) print("expect: ", expect) assert np.all(np.abs(diff) < error) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_fake_quant3(): # WithVarsNoNudging_NarrowRange x = np.array([-10.1, -10.0, -9.90, -9.75, 53.5, 53.6]).reshape(2, 3).astype(np.float32) min_val = np.array([-10.0]).reshape(1).astype(np.float32) max_val = np.array([53.5]).reshape(1).astype(np.float32) expect = np.array([-10.0, -10.0, -10.0, -9.75, 53.5, 53.5]).astype(np.float32) net = Net(num_bits=8, narrow_range=True) output = net(Tensor(x), Tensor(min_val), Tensor(max_val)) error = np.ones(shape=expect.shape) * 1.0e-5 diff = output.asnumpy().flatten() - expect print("output: ", output) print("expect: ", expect) assert np.all(np.abs(diff) < error) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_fake_quant4(): # WithVarsNudgedDown_RegularRange x = np.array([-0.1, 0.0, 0.1, 0.25, 63.75, 63.8]).reshape(2, 3).astype(np.float32) min_val = np.array([-0.1]).reshape(1).astype(np.float32) max_val = np.array([63.65]).reshape(1).astype(np.float32) expect = np.array([-0.0, 0.0, 0.0, 0.25, 63.75, 63.75]).astype(np.float32) net = Net(num_bits=8, narrow_range=False) output = net(Tensor(x), Tensor(min_val), Tensor(max_val)) error = np.ones(shape=expect.shape) * 1.0e-5 diff = output.asnumpy().flatten() - expect print("output: ", output) print("expect: ", expect) assert np.all(np.abs(diff) < error) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_fake_quant5(): # WithVarsNudgedDown_NarrowRange x = np.array([-0.1, 0.0, 0.1, 0.25, 63.5, 63.6]).reshape(2, 3).astype(np.float32) min_val = np.array([-0.1]).reshape(1).astype(np.float32) max_val = np.array([63.4]).reshape(1).astype(np.float32) expect = np.array([-0.0, 0.0, 0.0, 0.25, 63.5, 63.5]).astype(np.float32) net = Net(num_bits=8, narrow_range=True) output = net(Tensor(x), Tensor(min_val), Tensor(max_val)) error = np.ones(shape=expect.shape) * 1.0e-5 diff = output.asnumpy().flatten() - expect print("output: ", output) print("expect: ", expect) assert np.all(np.abs(diff) < error) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_fake_quant6(): # WithVarsNudgedUp_RegularRange x = np.array([-0.26, -0.25, -0.24, 0.0, 63.5, 63.6]).reshape(2, 3).astype(np.float32) min_val = np.array([-0.125]).reshape(1).astype(np.float32) max_val = np.array([63.625]).reshape(1).astype(np.float32) expect = np.array([-0.25, -0.25, -0.25, 0.0, 63.5, 63.5]).astype(np.float32) net = Net(num_bits=8, narrow_range=False) output = net(Tensor(x), Tensor(min_val), Tensor(max_val)) error = np.ones(shape=expect.shape) * 1.0e-5 diff = output.asnumpy().flatten() - expect print("output: ", output) print("expect: ", expect) assert np.all(np.abs(diff) < error) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_fake_quant7(): # WithVarsNudgedUp_NarrowRange x = np.array([-0.26, -0.25, -0.24, 0.0, 63.25, 63.3]).reshape(2, 3).astype(np.float32) min_val = np.array([-0.125]).reshape(1).astype(np.float32) max_val = np.array([63.375]).reshape(1).astype(np.float32) expect = np.array([-0.25, -0.25, -0.25, 0.0, 63.25, 63.25]).astype(np.float32) net = Net(num_bits=8, narrow_range=True) output = net(Tensor(x), Tensor(min_val), Tensor(max_val)) error = np.ones(shape=expect.shape) * 1.0e-5 diff = output.asnumpy().flatten() - expect print("output: ", output) print("expect: ", expect) assert np.all(np.abs(diff) < error) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_fake_quant8(): # WithVarsNudgedZeroIs255_RegularRange x = np.array([-63.80, -63.75, -63.70, -63.5, 0.0, 0.1]).reshape(2, 3).astype(np.float32) min_val = np.array([-63.65]).reshape(1).astype(np.float32) max_val = np.array([0.1]).reshape(1).astype(np.float32) expect = np.array([-63.75, -63.75, -63.75, -63.5, 0.0, 0.0]).astype(np.float32) net = Net(num_bits=8, narrow_range=False) output = net(Tensor(x), Tensor(min_val), Tensor(max_val)) error = np.ones(shape=expect.shape) * 1.0e-5 diff = output.asnumpy().flatten() - expect print("output: ", output) print("expect: ", expect) assert np.all(np.abs(diff) < error) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_fake_quant9(): # WithVarsNudgedZeroIs255_NarrowRange x = np.array([-63.6, -63.5, -63.4, -63.25, 0.0, 0.1]).reshape(2, 3).astype(np.float32) min_val = np.array([-63.4]).reshape(1).astype(np.float32) max_val = np.array([0.1]).reshape(1).astype(np.float32) expect = np.array([-63.5, -63.5, -63.5, -63.25, 0.0, 0.0]).astype(np.float32) net = Net(num_bits=8, narrow_range=True) output = net(Tensor(x), Tensor(min_val), Tensor(max_val)) error = np.ones(shape=expect.shape) * 1.0e-5 diff = output.asnumpy().flatten() - expect print("output: ", output) print("expect: ", expect) assert np.all(np.abs(diff) < error) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_fake_quant10(): # WithVarsNoNudging_4Bits_RegularRange x = np.array([-6.1, -6.0, -5.9, -5.5, 1.5, 1.6]).reshape(2, 3).astype(np.float32) min_val = np.array([-6.0]).reshape(1).astype(np.float32) max_val = np.array([1.5]).reshape(1).astype(np.float32) expect = np.array([-6.0, -6.0, -6.0, -5.5, 1.5, 1.5]).astype(np.float32) net = Net(num_bits=4, narrow_range=False) output = net(Tensor(x), Tensor(min_val), Tensor(max_val)) error = np.ones(shape=expect.shape) * 1.0e-5 diff = output.asnumpy().flatten() - expect print("output: ", output) print("expect: ", expect) assert np.all(np.abs(diff) < error) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_fake_quant11(): # WithVarsNoNudging_4Bits_NarrowRange x = np.array([-6.1, -6.0, -5.9, -5.5, 1.0, 1.1]).reshape(2, 3).astype(np.float32) min_val = np.array([-6.0]).reshape(1).astype(np.float32) max_val = np.array([1.0]).reshape(1).astype(np.float32) expect = np.array([-6.0, -6.0, -6.0, -5.5, 1.0, 1.0]).astype(np.float32) net = Net(num_bits=4, narrow_range=True) output = net(Tensor(x), Tensor(min_val), Tensor(max_val)) error = np.ones(shape=expect.shape) * 1.0e-5 diff = output.asnumpy().flatten() - expect print("output: ", output) print("expect: ", expect) assert np.all(np.abs(diff) < error) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_fake_quant12(): # WithVarsNudgedDown_4Bits_RegularRange x = np.array([-0.1, 0.0, 0.1, 0.5, 7.5, 7.6]).reshape(2, 3).astype(np.float32) min_val = np.array([-0.1]).reshape(1).astype(np.float32) max_val = np.array([7.4]).reshape(1).astype(np.float32) expect = np.array([-0.0, 0.0, 0.0, 0.5, 7.5, 7.5]).astype(np.float32) net = Net(num_bits=4, narrow_range=False) output = net(Tensor(x), Tensor(min_val), Tensor(max_val)) error = np.ones(shape=expect.shape) * 1.0e-5 diff = output.asnumpy().flatten() - expect print("output: ", output) print("expect: ", expect) assert np.all(np.abs(diff) < error) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_fake_quant13(): # WithVarsNudgedDown_4Bits_NarrowRange x = np.array([-0.1, 0.0, 0.1, 0.5, 7.0, 7.1]).reshape(2, 3).astype(np.float32) min_val = np.array([-0.1]).reshape(1).astype(np.float32) max_val = np.array([6.9]).reshape(1).astype(np.float32) expect = np.array([-0.0, 0.0, 0.0, 0.5, 7.0, 7.0]).astype(np.float32) net = Net(num_bits=4, narrow_range=True) output = net(Tensor(x), Tensor(min_val), Tensor(max_val)) error = np.ones(shape=expect.shape) * 1.0e-5 diff = output.asnumpy().flatten() - expect print("output: ", output) print("expect: ", expect) assert np.all(np.abs(diff) < error) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_fake_quant14(): # WithVarsNudgedUp_4Bits_RegularRange x = np.array([-0.6, -0.5, -0.24, 0.0, 7.0, 7.1]).reshape(2, 3).astype(np.float32) min_val = np.array([-0.4]).reshape(1).astype(np.float32) max_val = np.array([7.1]).reshape(1).astype(np.float32) expect = np.array([-0.5, -0.5, -0.00, 0.0, 7.0, 7.0]).astype(np.float32) net = Net(num_bits=4, narrow_range=False) output = net(Tensor(x), Tensor(min_val), Tensor(max_val)) error = np.ones(shape=expect.shape) * 1.0e-5 diff = output.asnumpy().flatten() - expect print("output: ", output) print("expect: ", expect) assert np.all(np.abs(diff) < error) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_fake_quant15(): # WithVarsNudgedUp_4Bits_NarrowRange x = np.array([-0.6, -0.5, -0.24, 0.0, 6.5, 6.6]).reshape(2, 3).astype(np.float32) min_val = np.array([-0.4]).reshape(1).astype(np.float32) max_val = np.array([6.6]).reshape(1).astype(np.float32) expect = np.array([-0.5, -0.5, -0.00, 0.0, 6.5, 6.5]).astype(np.float32) net = Net(num_bits=4, narrow_range=True) output = net(Tensor(x), Tensor(min_val), Tensor(max_val)) error = np.ones(shape=expect.shape) * 1.0e-5 diff = output.asnumpy().flatten() - expect print("output: ", output) print("expect: ", expect) assert np.all(np.abs(diff) < error) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_fake_quant16(): # WithVarsNudgedZero15_4Bits_RegularRange x = np.array([-7.6, -7.5, -7.4, -7.2, 0.0, 0.1]).reshape(2, 3).astype(np.float32) min_val = np.array([-7.3]).reshape(1).astype(np.float32) max_val = np.array([0.2]).reshape(1).astype(np.float32) expect = np.array([-7.5, -7.5, -7.5, -7.0, 0.0, 0.0]).astype(np.float32) net = Net(num_bits=4, narrow_range=False) output = net(Tensor(x), Tensor(min_val), Tensor(max_val)) error = np.ones(shape=expect.shape) * 1.0e-5 diff = output.asnumpy().flatten() - expect print("output: ", output) print("expect: ", expect) assert np.all(np.abs(diff) < error) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_fake_quant17(): # WithVarsNudgedZero15_4Bits_NarrowRange x = np.array([-7.1, -7.0, -6.9, -6.5, 0.0, 0.1]).reshape(2, 3).astype(np.float32) min_val = np.array([-6.8]).reshape(1).astype(np.float32) max_val = np.array([0.2]).reshape(1).astype(np.float32) expect = np.array([-7.0, -7.0, -7.0, -6.5, 0.0, 0.0]).astype(np.float32) net = Net(num_bits=4, narrow_range=True) output = net(Tensor(x), Tensor(min_val), Tensor(max_val)) error = np.ones(shape=expect.shape) * 1.0e-5 diff = output.asnumpy().flatten() - expect print("output: ", output) print("expect: ", expect) assert np.all(np.abs(diff) < error)