# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn import mindspore as ms import mindspore.ops.operations as P import mindspore.ops.operations._grad_ops as G from mindspore.ops.composite import GradOperation from mindspore import Tensor class GatherDNet(nn.Cell): def __init__(self, dim=0): super(GatherDNet, self).__init__() self.gather_d = P.GatherD() self.dim = dim def construct(self, x, index): return self.gather_d(x, self.dim, index) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_gather_grad_graph_int32_fp32(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") x = Tensor(np.array([[1, 1, 1, 1, 1], [1, 1, 1, 1, 1]]), ms.float32) dim = 0 index = Tensor(np.array([[0, 1, 1, 0, 0], [1, 0, 0, 1, 1]]), ms.int32) grad = Tensor(np.array([[0.9031, 0.0890, 0.2779, 0.3198, 0.5710], [0.6949, 0.8439, 0.2003, 0.6868, 0.4437]]), ms.float32) expect = np.array([[0.9031, 0.8439, 0.2003, 0.3198, 0.5710], [0.6949, 0.0890, 0.2779, 0.6868, 0.4437]], np.float32) net = GatherDNet(dim) grad_net = GradOperation(get_all=True, sens_param=True)(net) output = grad_net(x, index, grad) error = 1e-4 diff = output[0].asnumpy() - expect assert np.all(diff < error) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_gather_grad_graph_int64_fp32(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") x = Tensor(np.array([[1, 1, 1, 1, 1], [1, 1, 1, 1, 1]]), ms.float32) dim = 0 index = Tensor(np.array([[0, 1, 1, 0, 0], [1, 0, 0, 1, 1]]), ms.int64) grad = Tensor(np.array([[0.9031, 0.0890, 0.2779, 0.3198, 0.5710], [0.6949, 0.8439, 0.2003, 0.6868, 0.4437]]), ms.float32) expect = np.array([[0.9031, 0.8439, 0.2003, 0.3198, 0.5710], [0.6949, 0.0890, 0.2779, 0.6868, 0.4437]], np.float32) net = GatherDNet(dim) grad_net = GradOperation(get_all=True, sens_param=True)(net) output = grad_net(x, index, grad) error = 1e-4 diff = output[0].asnumpy() - expect assert np.all(diff < error) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_gather_grad_graph_int32_fp16(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") x = Tensor(np.array([[1, 1, 1, 1, 1], [1, 1, 1, 1, 1]]), ms.float16) dim = 0 index = Tensor(np.array([[0, 1, 1, 0, 0], [1, 0, 0, 1, 1]]), ms.int32) grad = Tensor(np.array([[0.9031, 0.0890, 0.2779, 0.3198, 0.5710], [0.6949, 0.8439, 0.2003, 0.6868, 0.4437]]), ms.float16) expect = np.array([[0.9031, 0.8439, 0.2003, 0.3198, 0.5710], [0.6949, 0.0890, 0.2779, 0.6868, 0.4437]], np.float16) net = GatherDNet(dim) grad_net = GradOperation(get_all=True, sens_param=True)(net) output = grad_net(x, index, grad) error = 1e-4 diff = output[0].asnumpy() - expect assert np.all(diff < error) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_gather_grad_graph_int64_fp16(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") x = Tensor(np.array([[1, 1, 1, 1, 1], [1, 1, 1, 1, 1]]), ms.float16) dim = 0 index = Tensor(np.array([[0, 1, 1, 0, 0], [1, 0, 0, 1, 1]]), ms.int64) grad = Tensor(np.array([[0.9031, 0.0890, 0.2779, 0.3198, 0.5710], [0.6949, 0.8439, 0.2003, 0.6868, 0.4437]]), ms.float16) expect = np.array([[0.9031, 0.8439, 0.2003, 0.3198, 0.5710], [0.6949, 0.0890, 0.2779, 0.6868, 0.4437]], np.float16) net = GatherDNet(dim) grad_net = GradOperation(get_all=True, sens_param=True)(net) output = grad_net(x, index, grad) error = 1e-4 diff = output[0].asnumpy() - expect assert np.all(diff < error) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_gather_grad_pynative_int32_fp32(): context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") x_shape = (2, 5) dim = 0 index = Tensor(np.array([[0, 1, 1, 0, 0], [1, 0, 0, 1, 1]]), ms.int32) grad = Tensor(np.array([[0.9031, 0.0890, 0.2779, 0.3198, 0.5710], [0.6949, 0.8439, 0.2003, 0.6868, 0.4437]]), ms.float32) expect = np.array([[0.9031, 0.8439, 0.2003, 0.3198, 0.5710], [0.6949, 0.0890, 0.2779, 0.6868, 0.4437]], np.float32) output = G.GatherDGrad(dim, x_shape)(index, grad) error = 1e-4 diff = output.asnumpy() - expect assert np.all(diff < error) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_gather_grad_pynative_int64_fp32(): context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") x_shape = (2, 5) dim = 0 index = Tensor(np.array([[0, 1, 1, 0, 0], [1, 0, 0, 1, 1]]), ms.int64) grad = Tensor(np.array([[0.9031, 0.0890, 0.2779, 0.3198, 0.5710], [0.6949, 0.8439, 0.2003, 0.6868, 0.4437]]), ms.float32) expect = np.array([[0.9031, 0.8439, 0.2003, 0.3198, 0.5710], [0.6949, 0.0890, 0.2779, 0.6868, 0.4437]], np.float32) output = G.GatherDGrad(dim, x_shape)(index, grad) error = 1e-4 diff = output.asnumpy() - expect assert np.all(diff < error) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_gather_grad_pynative_int32_fp16(): context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") x_shape = (2, 5) dim = 0 index = Tensor(np.array([[0, 1, 1, 0, 0], [1, 0, 0, 1, 1]]), ms.int32) grad = Tensor(np.array([[0.9031, 0.0890, 0.2779, 0.3198, 0.5710], [0.6949, 0.8439, 0.2003, 0.6868, 0.4437]]), ms.float16) expect = np.array([[0.9031, 0.8439, 0.2003, 0.3198, 0.5710], [0.6949, 0.0890, 0.2779, 0.6868, 0.4437]], np.float16) output = G.GatherDGrad(dim, x_shape)(index, grad) error = 1e-4 diff = output.asnumpy() - expect assert np.all(diff < error) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_gather_grad_pynative_int64_fp16(): context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") x_shape = (2, 5) dim = 0 index = Tensor(np.array([[0, 1, 1, 0, 0], [1, 0, 0, 1, 1]]), ms.int64) grad = Tensor(np.array([[0.9031, 0.0890, 0.2779, 0.3198, 0.5710], [0.6949, 0.8439, 0.2003, 0.6868, 0.4437]]), ms.float16) expect = np.array([[0.9031, 0.8439, 0.2003, 0.3198, 0.5710], [0.6949, 0.0890, 0.2779, 0.6868, 0.4437]], np.float16) output = G.GatherDGrad(dim, x_shape)(index, grad) error = 1e-4 diff = output.asnumpy() - expect assert np.all(diff < error)