# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P class InTopKNet(nn.Cell): def __init__(self, k): super(InTopKNet, self).__init__() self.in_top_k = P.InTopK(k) def construct(self, predictions, targets): return self.in_top_k(predictions, targets) def in_top_k(nptype): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") predictions = Tensor(np.array([[4, 1, 2, 0, 0, 0, 0, 0, 0], [7, 9, 9, 0, 0, 0, 0, 0, 0], [3, 3, 3, 0, 0, 0, 0, 0, 0]]).astype(nptype)) k = 165 in_top_k_net = InTopKNet(k) targets = Tensor(np.array([0, 1, 0]).astype(np.int32)) output = in_top_k_net(predictions, targets) expected_output = np.array([True, True, True]) np.testing.assert_array_equal(output.asnumpy(), expected_output) k = -2 in_top_k_net = InTopKNet(k) targets = Tensor(np.array([0, 1, 0]).astype(np.int32)) output = in_top_k_net(predictions, targets) expected_output = np.array([False, False, False]) np.testing.assert_array_equal(output.asnumpy(), expected_output) k = 1 in_top_k_net = InTopKNet(k) targets = Tensor(np.array([0, 1, 0]).astype(np.int32)) output = in_top_k_net(predictions, targets) expected_output = np.array([True, True, True]) np.testing.assert_array_equal(output.asnumpy(), expected_output) targets = Tensor(np.array([1, 0, 2]).astype(np.int32)) output = in_top_k_net(predictions, targets) expected_output = np.array([False, False, True]) np.testing.assert_array_equal(output.asnumpy(), expected_output) targets = Tensor(np.array([2, 2, 1]).astype(np.int32)) output = in_top_k_net(predictions, targets) expected_output = np.array([False, True, True]) np.testing.assert_array_equal(output.asnumpy(), expected_output) k = 2 in_top_k_net = InTopKNet(k) targets = Tensor(np.array([0, 1, 2]).astype(np.int32)) output = in_top_k_net(predictions, targets) expected_output = np.array([True, True, True]) np.testing.assert_array_equal(output.asnumpy(), expected_output) targets = Tensor(np.array([2, 2, 0]).astype(np.int32)) output = in_top_k_net(predictions, targets) expected_output = np.array([True, True, True]) np.testing.assert_array_equal(output.asnumpy(), expected_output) targets = Tensor(np.array([1, 0, 1]).astype(np.int32)) output = in_top_k_net(predictions, targets) expected_output = np.array([False, False, True]) np.testing.assert_array_equal(output.asnumpy(), expected_output) k = 3 in_top_k_net = InTopKNet(k) targets = Tensor(np.array([2, 2, 2]).astype(np.int32)) output = in_top_k_net(predictions, targets) expected_output = np.array([True, True, True]) np.testing.assert_array_equal(output.asnumpy(), expected_output) targets = Tensor(np.array([1, 1, 0]).astype(np.int32)) output = in_top_k_net(predictions, targets) expected_output = np.array([True, True, True]) np.testing.assert_array_equal(output.asnumpy(), expected_output) targets = Tensor(np.array([0, 0, 1]).astype(np.int32)) output = in_top_k_net(predictions, targets) expected_output = np.array([True, True, True]) np.testing.assert_array_equal(output.asnumpy(), expected_output) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_in_top_k_float16(): in_top_k(np.float16) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_in_top_k_float32(): in_top_k(np.float32) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_in_top_k_invalid_input(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") # predictions must be 2d with pytest.raises(ValueError): in_top_k_net = InTopKNet(1) predictions = Tensor(np.zeros(4).astype(np.float32)) targets = Tensor(np.zeros(4).astype(np.int32)) _ = in_top_k_net(predictions, targets) # targets must be 1d with pytest.raises(ValueError): in_top_k_net = InTopKNet(1) predictions = Tensor(np.zeros(4).astype(np.float32)) targets = Tensor(np.zeros(4).reshape(2, 2).astype(np.int32)) _ = in_top_k_net(predictions, targets) # predictions.shape[1] must be equal to targets.shape[0] with pytest.raises(ValueError): in_top_k_net = InTopKNet(1) predictions = Tensor(np.zeros(4).reshape(2, 2).astype(np.float32)) targets = Tensor(np.zeros(4).astype(np.int32)) _ = in_top_k_net(predictions, targets)