# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context from mindspore.common.tensor import Tensor from mindspore.nn import Cell from mindspore.ops import operations as P class Net(Cell): def __init__(self): super(Net, self).__init__() self.lessequal = P.LessEqual() def construct(self, x, y): return self.lessequal(x, y) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_lessequal(): x = Tensor(np.array([[1, 2, 3]]).astype(np.float32)) y = Tensor(np.array([[2, 2, 2]]).astype(np.float32)) expect = np.array([[True, True, False]]) x1 = Tensor(np.array([[1, 2, 3]]).astype(np.int16)) y1 = Tensor(np.array([[2]]).astype(np.int16)) expect1 = np.array([[True, True, False]]) x2 = Tensor(np.array([[1, 2, 3]]).astype(np.uint8)) y2 = Tensor(np.array([[2]]).astype(np.uint8)) expect2 = np.array([[True, True, False]]) x3 = Tensor(np.array([[1, 2, 3]]).astype(np.float64)) y3 = Tensor(np.array([[2]]).astype(np.float64)) expect3 = np.array([[True, True, False]]) x4 = Tensor(np.array([[1, 2, 3]]).astype(np.float16)) y4 = Tensor(np.array([[2]]).astype(np.float16)) expect4 = np.array([[True, True, False]]) x5 = Tensor(np.array([[1, 2, 3]]).astype(np.int64)) y5 = Tensor(np.array([[2]]).astype(np.int64)) expect5 = np.array([[True, True, False]]) x6 = Tensor(np.array([[1, 2, 3]]).astype(np.int32)) y6 = Tensor(np.array([[2, 2, 2]]).astype(np.int32)) expect6 = np.array([[True, True, False]]) x7 = Tensor(np.array([[1, 2, 3]]).astype(np.int8)) y7 = Tensor(np.array([[2]]).astype(np.int8)) expect7 = np.array([[True, True, False]]) x = [x, x1, x2, x3, x4, x5, x6, x7] y = [y, y1, y2, y3, y4, y5, y6, y7] expect = [expect, expect1, expect2, expect3, expect4, expect5, expect6, expect7] context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") lessequal = Net() for i, xi in enumerate(x): output = lessequal(xi, y[i]) assert np.all(output.asnumpy() == expect[i]) assert output.shape == expect[i].shape print('test [%d/%d] passed!' % (i, len(x))) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") lessequal = Net() for i, xi in enumerate(x): output = lessequal(xi, y[i]) assert np.all(output.asnumpy() == expect[i]) assert output.shape == expect[i].shape print('test [%d/%d] passed!' % (i, len(x)))