# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest from mindspore.ops import composite as C import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor context.set_context(mode=context.GRAPH_MODE, device_target='GPU') class Net(nn.Cell): def __init__(self, sample, replacement, seed=0): super(Net, self).__init__() self.sample = sample self.replacement = replacement self.seed = seed def construct(self, x): return C.multinomial(x, self.sample, self.replacement, self.seed) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_multinomial(): x0 = Tensor(np.array([0.9, 0.2]).astype(np.float32)) x1 = Tensor(np.array([[0.9, 0.2], [0.9, 0.2]]).astype(np.float32)) net0 = Net(1, True, 20) net1 = Net(2, True, 20) net2 = Net(6, True, 20) out0 = net0(x0) out1 = net1(x0) out2 = net2(x1) assert out0.asnumpy().shape == (1,) assert out1.asnumpy().shape == (2,) assert out2.asnumpy().shape == (2, 6)