# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.common.api import ms_function from mindspore.ops import operations as P x0 = np.random.rand(2, 3, 4, 4).astype(np.float32) axis0 = 3 keep_dims0 = True x1 = np.random.rand(2, 3, 4, 4).astype(np.float16) axis1 = 3 keep_dims1 = False x2 = np.random.rand(2, 3, 1, 4).astype(np.int8) axis2 = 2 keep_dims2 = True x3 = np.random.rand(2, 3, 1, 4).astype(np.float32) axis3 = 2 keep_dims3 = False x4 = np.random.rand(2, 3, 4, 4).astype(np.float16) axis4 = () np_axis4 = None keep_dims4 = True x5 = np.random.rand(2, 3, 4, 4).astype(np.int8) axis5 = () np_axis5 = None keep_dims5 = False x6 = np.random.rand(2, 3, 4, 4).astype(np.float32) axis6 = -2 keep_dims6 = False x7 = np.random.rand(2, 3, 4, 4).astype(np.float16) axis7 = (-2, -1) keep_dims7 = True x8 = np.random.rand(1, 1, 1, 1).astype(np.float32) axis8 = () np_axis8 = None keep_dims8 = True class ReduceProd(nn.Cell): def __init__(self): super(ReduceProd, self).__init__() self.x0 = Tensor(x0) self.axis0 = axis0 self.keep_dims0 = keep_dims0 self.x1 = Tensor(x1) self.axis1 = axis1 self.keep_dims1 = keep_dims1 self.x2 = Tensor(x2) self.axis2 = axis2 self.keep_dims2 = keep_dims2 self.x3 = Tensor(x3) self.axis3 = axis3 self.keep_dims3 = keep_dims3 self.x4 = Tensor(x4) self.axis4 = axis4 self.keep_dims4 = keep_dims4 self.x5 = Tensor(x5) self.axis5 = axis5 self.keep_dims5 = keep_dims5 self.x6 = Tensor(x6) self.axis6 = axis6 self.keep_dims6 = keep_dims6 self.x7 = Tensor(x7) self.axis7 = axis7 self.keep_dims7 = keep_dims7 self.x8 = Tensor(x8) self.axis8 = axis8 self.keep_dims8 = keep_dims8 @ms_function def construct(self): return (P.ReduceProd(self.keep_dims0)(self.x0, self.axis0), P.ReduceProd(self.keep_dims1)(self.x1, self.axis1), P.ReduceProd(self.keep_dims2)(self.x2, self.axis2), P.ReduceProd(self.keep_dims3)(self.x3, self.axis3), P.ReduceProd(self.keep_dims4)(self.x4, self.axis4), P.ReduceProd(self.keep_dims5)(self.x5, self.axis5), P.ReduceProd(self.keep_dims6)(self.x6, self.axis6), P.ReduceProd(self.keep_dims7)(self.x7, self.axis7), P.ReduceProd(self.keep_dims8)(self.x8, self.axis8)) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_reduce_prod(): context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU') reduce_max = ReduceProd() output = reduce_max() expect1 = np.prod(x1, axis=axis1, keepdims=keep_dims1) diff1 = abs(output[1].asnumpy() - expect1) error1 = np.ones(shape=expect1.shape) * 1.0e-5 assert np.all(diff1 < error1) assert output[1].shape == expect1.shape expect2 = np.prod(x2, axis=axis2, keepdims=keep_dims2) diff2 = abs(output[2].asnumpy() - expect2) error2 = np.ones(shape=expect2.shape) * 1.0e-5 assert np.all(diff2 < error2) assert output[2].shape == expect2.shape expect3 = np.prod(x3, axis=axis3, keepdims=keep_dims3) diff3 = abs(output[3].asnumpy() - expect3) error3 = np.ones(shape=expect3.shape) * 1.0e-5 assert np.all(diff3 < error3) assert output[3].shape == expect3.shape expect4 = np.prod(x4, axis=np_axis4, keepdims=keep_dims4) diff4 = abs(output[4].asnumpy() - expect4) error4 = np.ones(shape=expect4.shape) * 1.0e-5 assert np.all(diff4 < error4) assert output[4].shape == expect4.shape expect5 = np.prod(x5, axis=np_axis5, keepdims=keep_dims5) diff5 = abs(output[5].asnumpy() - expect5) error5 = np.ones(shape=expect5.shape) * 1.0e-5 assert np.all(diff5 < error5) assert output[5].shape == expect5.shape expect6 = np.prod(x6, axis=axis6, keepdims=keep_dims6) diff6 = abs(output[6].asnumpy() - expect6) error6 = np.ones(shape=expect6.shape) * 1.0e-5 assert np.all(diff6 < error6) assert output[6].shape == expect6.shape expect7 = np.prod(x7, axis=axis7, keepdims=keep_dims7) diff7 = abs(output[7].asnumpy() - expect7) error7 = np.ones(shape=expect7.shape) * 1.0e-5 assert np.all(diff7 < error7) expect8 = np.prod(x8, axis=np_axis8, keepdims=keep_dims8) diff8 = abs(output[8].asnumpy() - expect8) error8 = np.ones(shape=expect8.shape) * 1.0e-5 assert np.all(diff8 < error8)