# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P import mindspore.ops.operations._grad_ops as G class ReluNet(nn.Cell): def __init__(self): super(ReluNet, self).__init__() self.relu = P.ReLU() self.relu_grad = G.ReluGrad() def construct(self, x, dy): y = self.relu(x) dx = self.relu_grad(dy, y) return y, dx @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_ReluV2(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") x = Tensor(np.array([[[[-1, 1, 10], [1, -1, 1], [10, 1, -1]]]]).astype(np.float32)) dy = Tensor(np.array([[[[1, 0, 3], [0, 1, 0], [2, 1, 1]]]]).astype(np.float32)) expect_y = np.array([[[[0, 1, 10,], [1, 0, 1,], [10, 1, 0.]]]]).astype(np.float32) expect_dx = np.array([[[[0, 0, 3], [0, 0, 0], [2, 1, 0]]]]).astype(np.float32) net = ReluNet() y, dx = net(Tensor(x), Tensor(dy)) assert np.allclose(y.asnumpy(), expect_y) assert np.allclose(dx.asnumpy(), expect_dx) class AddReluNet(nn.Cell): def __init__(self): super(AddReluNet, self).__init__() self.add = P.Add() self.relu = P.ReLU() self.relu_grad = G.ReluGrad() def construct(self, x1, x2, dy): y = self.add(x1, x2) y = self.relu(y) dx = self.relu_grad(dy, y) return y, dx @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_AddRelu(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") x1 = Tensor(np.array([[[[-1, 1, 10], [1, -1, 1], [10, 1, -1]]]]).astype(np.float32)) x2 = Tensor(np.array([[[[-1, 1, 10], [1, -1, 1], [10, 1, -1]]]]).astype(np.float32)) dy = Tensor(np.array([[[[1, 0, 3], [0, 1, 0], [2, 1, 1]]]]).astype(np.float32)) expect_y = np.array([[[[0, 2, 20], [2, 0, 2], [20, 2, 0]]]]).astype(np.float32) expect_dx = np.array([[[[0, 0, 3], [0, 0, 0], [2, 1, 0]]]]).astype(np.float32) net = AddReluNet() y, dx1 = net(Tensor(x1), Tensor(x2), Tensor(dy)) assert np.allclose(y.asnumpy(), expect_y) assert np.allclose(dx1.asnumpy(), expect_dx) class AddReluGradNet(nn.Cell): def __init__(self): super(AddReluGradNet, self).__init__() self.add = P.Add() self.relu = P.ReLU() self.relu_grad = G.ReluGrad() def construct(self, x, dy1, dy2): y = self.relu(x) dy = self.add(dy1, dy2) dx = self.relu_grad(dy, y) return y, dx @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_AddReluGrad(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") x = Tensor(np.array([[[[-1, 1, 10], [1, -1, 1], [10, 1, -1]]]]).astype(np.float32)) dy1 = Tensor(np.array([[[[1, 0, 3], [0, 1, 0], [2, 1, 1]]]]).astype(np.float32)) dy2 = Tensor(np.array([[[[1, 0, 3], [0, 1, 0], [2, 1, 1]]]]).astype(np.float32)) expect_y = np.array([[[[0, 1, 10,], [1, 0, 1,], [10, 1, 0.]]]]).astype(np.float32) expect_dx = np.array([[[[0, 0, 6], [0, 0, 0], [4, 2, 0]]]]).astype(np.float32) net = AddReluGradNet() y, dx1 = net(Tensor(x), Tensor(dy1), Tensor(dy2)) assert np.allclose(y.asnumpy(), expect_y) assert np.allclose(dx1.asnumpy(), expect_dx)