# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops.operations import _inner_ops as inner from mindspore.ops import operations as P @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_square_normal(): context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") x_np = np.random.rand(2, 3, 4, 4).astype(np.float32) output_ms = P.Square()(Tensor(x_np)) output_np = np.square(x_np) assert np.allclose(output_ms.asnumpy(), output_np) x_np = np.random.rand(2, 3, 1, 5, 4, 4).astype(np.float32) output_ms = P.Square()(Tensor(x_np)) output_np = np.square(x_np) assert np.allclose(output_ms.asnumpy(), output_np) x_np = np.random.rand(2,).astype(np.float32) output_ms = P.Square()(Tensor(x_np)) output_np = np.square(x_np) assert np.allclose(output_ms.asnumpy(), output_np) # Dynamic Shape Testing class SqaureNetDynamic(nn.Cell): def __init__(self): super(SqaureNetDynamic, self).__init__() self.square = P.Square() self.gpu_convert_to_dynamic_shape = inner.GpuConvertToDynamicShape() def construct(self, x): x_dyn = self.gpu_convert_to_dynamic_shape(x) return self.square(x_dyn) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_square_dynamic(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") net = SqaureNetDynamic() x_np = np.random.rand(1, 3, 4, 4, 1).astype(np.float32) output_ms = net(Tensor(x_np)) output_np = np.square(x_np) assert np.allclose(output_ms.asnumpy(), output_np) x_np = np.random.rand(2, 3, 4, 4, 8, 9).astype(np.float16) output_ms = net(Tensor(x_np)) output_np = np.square(x_np) assert np.allclose(output_ms.asnumpy(), output_np) x_np = np.random.rand(1).astype(np.float32) output_ms = net(Tensor(x_np)) output_np = np.square(x_np) assert np.allclose(output_ms.asnumpy(), output_np)