# Copyright 2019-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P from mindspore.ops.operations import _inner_ops as inner class NetZerosLike(nn.Cell): def __init__(self): super(NetZerosLike, self).__init__() self.zeros_like = P.ZerosLike() def construct(self, x): return self.zeros_like(x) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_ZerosLike(): x0_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32) x1_np = np.random.uniform(-2, 2, 1).astype(np.float32) x0 = Tensor(x0_np) x1 = Tensor(x1_np) context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") zeros_like = NetZerosLike() output0 = zeros_like(x0) expect0 = np.zeros_like(x0_np) diff0 = output0.asnumpy() - expect0 error0 = np.ones(shape=expect0.shape) * 1.0e-5 assert np.all(diff0 < error0) assert output0.shape == expect0.shape output1 = zeros_like(x1) expect1 = np.zeros_like(x1_np) diff1 = output1.asnumpy() - expect1 error1 = np.ones(shape=expect1.shape) * 1.0e-5 assert np.all(diff1 < error1) assert output1.shape == expect1.shape context.set_context(mode=context.GRAPH_MODE, device_target="GPU") zeros_like = NetZerosLike() output0 = zeros_like(x0) expect0 = np.zeros_like(x0_np) diff0 = output0.asnumpy() - expect0 error0 = np.ones(shape=expect0.shape) * 1.0e-5 assert np.all(diff0 < error0) assert output0.shape == expect0.shape output1 = zeros_like(x1) expect1 = np.zeros_like(x1_np) diff1 = output1.asnumpy() - expect1 error1 = np.ones(shape=expect1.shape) * 1.0e-5 assert np.all(diff1 < error1) assert output1.shape == expect1.shape class ZerosLikeDynamicNet(nn.Cell): def __init__(self): super(ZerosLikeDynamicNet, self).__init__() self.gpu_convert_to_dynamic_shape = inner.GpuConvertToDynamicShape() self.zeros_like = P.ZerosLike() def construct(self, x): converted_to_dynamic = self.gpu_convert_to_dynamic_shape(x) return self.zeros_like(converted_to_dynamic) def zeros_like_dynamic(x): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") net = ZerosLikeDynamicNet() return net(x) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_zeros_like_dynamic_bool(): x = Tensor(np.arange(120).reshape(3, 4, 1, 2, 5).astype(np.bool)) output = zeros_like_dynamic(x) expected = np.zeros([3, 4, 1, 2, 5]) np.testing.assert_array_equal(output.asnumpy(), expected) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_zeros_like_dynamic_int8(): x = Tensor(np.arange(24).reshape(1, 4, 1, 6).astype(np.int8)) output = zeros_like_dynamic(x) expected = np.zeros([1, 4, 1, 6]) np.testing.assert_array_equal(output.asnumpy(), expected) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_zeros_like_dynamic_uint8(): x = Tensor(np.arange(30).reshape(3, 2, 5).astype(np.uint8)) output = zeros_like_dynamic(x) expected = np.zeros([3, 2, 5]) np.testing.assert_array_equal(output.asnumpy(), expected) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_zeros_like_dynamic_int32(): x = Tensor(np.arange(16).reshape(2, 2, 2, 2).astype(np.int32)) output = zeros_like_dynamic(x) expected = np.zeros([2, 2, 2, 2]) np.testing.assert_array_equal(output.asnumpy(), expected) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_zeros_like_dynamic_float16(): x = Tensor(np.arange(120).reshape(3, 4, 1, 2, 5).astype(np.float16)) output = zeros_like_dynamic(x) expected = np.zeros([3, 4, 1, 2, 5]) np.testing.assert_array_almost_equal(output.asnumpy(), expected) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_zeros_like_dynamic_float32(): x = Tensor(np.arange(63).reshape(3, 7, 3).astype(np.float32)) output = zeros_like_dynamic(x) expected = np.zeros([3, 7, 3]) np.testing.assert_array_almost_equal(output.asnumpy(), expected) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_zeros_like_dynamic_float64(): x = Tensor(np.arange(2).reshape(2, 1, 1).astype(np.float64)) output = zeros_like_dynamic(x) expected = np.zeros([2, 1, 1]) np.testing.assert_array_almost_equal(output.asnumpy(), expected) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_zeros_like_dynamic_multiple_inputs(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") net = ZerosLikeDynamicNet() x = Tensor(np.arange(4).reshape(4).astype(np.float32)) output = net(x) expected = np.zeros([4]) np.testing.assert_array_almost_equal(output.asnumpy(), expected) x = Tensor(np.arange(8).reshape(2, 1, 2, 2).astype(np.uint8)) output = net(x) expected = np.zeros([2, 1, 2, 2]) np.testing.assert_array_equal(output.asnumpy(), expected) x = Tensor(np.arange(1).reshape(1).astype(np.float16)) output = net(x) expected = np.zeros([1]) np.testing.assert_array_almost_equal(output.asnumpy(), expected)