# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore.common.tensor import Tensor from mindspore.common.parameter import Parameter from mindspore.ops import operations as P class Net(nn.Cell): def __init__(self, input_scale, input_bias, input_mean, input_variance, is_training): super(Net, self).__init__() self.fused_bn_ex = P.BatchNorm(is_training=is_training, epsilon=1e-5, momentum=0.9) self.scale = Parameter(input_scale, name='scale') self.bias = Parameter(input_bias, name='b') self.mean = Parameter(input_mean, name='mean') self.variance = Parameter(input_variance, name='variance') def construct(self, input_x): return self.fused_bn_ex(input_x, self.scale, self.bias, self.mean, self.variance) def get_output(x, weight, bias, moving_mean, moving_var, is_training, enable_graph_kernel=False): context.set_context(enable_graph_kernel=enable_graph_kernel) net = Net(Tensor(weight), Tensor(bias), Tensor(moving_mean), Tensor(moving_var), is_training) output = net(Tensor(x)) return output, net.mean, net.variance def test_bn_train(): x = np.random.normal(0, 1, [1, 2, 4, 4]).astype(np.float32) weight = np.random.normal(0, 1, [2,]).astype(np.float32) bias = np.random.normal(0, 1, [2,]).astype(np.float32) moving_mean = np.random.normal(0, 1, [2,]).astype(np.float32) moving_var = np.random.normal(0, 1, [2,]).astype(np.float32) train_expect = get_output(x, weight, bias, moving_mean, moving_var, True, False) train_output = get_output(x, weight, bias, moving_mean, moving_var, True, True) assert np.allclose(train_expect[0][0].asnumpy(), train_output[0][0].asnumpy(), 0.0001, 0.0001) assert np.allclose(train_expect[0][3].asnumpy(), train_output[0][3].asnumpy(), 0.0001, 0.0001) assert np.allclose(train_expect[0][4].asnumpy(), train_output[0][4].asnumpy(), 0.0001, 0.0001) assert np.allclose(train_expect[1].data.asnumpy(), train_output[1].data.asnumpy(), 0.0001, 0.0001) assert np.allclose(train_expect[2].data.asnumpy(), train_output[2].data.asnumpy(), 0.0001, 0.0001) def test_bn_infer(): x = np.random.normal(5, 1, [1, 2, 4, 4]).astype(np.float32) weight = np.random.normal(5, 1, [2,]).astype(np.float32) bias = np.random.normal(5, 1, [2,]).astype(np.float32) moving_mean = np.random.normal(5, 1, [2,]).astype(np.float32) moving_var = np.random.normal(5, 1, [2,]).astype(np.float32) infer_expect = get_output(x, weight, bias, moving_mean, moving_var, False, False) infer_output = get_output(x, weight, bias, moving_mean, moving_var, False, True) assert np.allclose(infer_expect[0][0].asnumpy(), infer_output[0][0].asnumpy(), 0.0001, 0.0001) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_bn_train_gpu(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") test_bn_train() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_bn_infer_gpu(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") test_bn_infer()