# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.slice = P.Slice() def construct(self, x, begin, size): return self.slice(x, begin, size) def get_output(x, begin, size, enable_graph_kernel=False): context.set_context(enable_graph_kernel=enable_graph_kernel) net = Net() output = net(x, begin, size) return output def test_slice(): in1 = np.array([[[1, -1, 1], [2, -2, 2]], [[3, -3, 3], [4, -4, 4]], [[5, -5, 5], [6, -6, 6]]]).astype(np.float32) x1 = Tensor(in1) begin1 = (0, 1, 0) size1 = (2, 1, 3) expect = get_output(x1, begin1, size1, False) output = get_output(x1, begin1, size1, True) assert np.allclose(expect.asnumpy(), output.asnumpy(), 0.0001, 0.0001) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_slice_gpu(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") test_slice()