# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """test cases for exp""" import numpy as np import mindspore.context as context import mindspore.nn as nn import mindspore.nn.probability.bijector as msb from mindspore import Tensor from mindspore import dtype context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") class Net(nn.Cell): """ Test class: forward pass of bijector. """ def __init__(self): super(Net, self).__init__() self.bijector = msb.Exp() def construct(self, x_): forward = self.bijector.forward(x_) return forward def test_forward(): x = np.array([2.0, 3.0, 4.0, 5.0], dtype=np.float32) tx = Tensor(x, dtype=dtype.float32) forward = Net() ans = forward(tx) expected = np.exp(x) tol = 1e-5 assert (np.abs(ans.asnumpy() - expected) < tol).all() class Net1(nn.Cell): """ Test class: inverse pass of bijector. """ def __init__(self): super(Net1, self).__init__() self.bijector = msb.Exp() def construct(self, y_): inverse = self.bijector.inverse(y_) return inverse def test_inverse(): y = np.array([2.0, 3.0, 4.0, 5.0], dtype=np.float32) ty = Tensor(y, dtype=dtype.float32) inverse = Net1() ans = inverse(ty) expected = np.log(y) tol = 1e-6 assert (np.abs(ans.asnumpy() - expected) < tol).all() class Net2(nn.Cell): """ Test class: Forward Jacobian. """ def __init__(self): super(Net2, self).__init__() self.bijector = msb.Exp() def construct(self, x_): return self.bijector.forward_log_jacobian(x_) def test_forward_jacobian(): x = np.array([2.0, 3.0, 4.0, 5.0], dtype=np.float32) tx = Tensor(x, dtype=dtype.float32) forward_jacobian = Net2() ans = forward_jacobian(tx) expected = x tol = 1e-6 assert (np.abs(ans.asnumpy() - expected) < tol).all() class Net3(nn.Cell): """ Test class: Backward Jacobian. """ def __init__(self): super(Net3, self).__init__() self.bijector = msb.Exp() def construct(self, y_): return self.bijector.inverse_log_jacobian(y_) def test_inverse_jacobian(): y = np.array([2.0, 3.0, 4.0, 5.0], dtype=np.float32) ty = Tensor(y, dtype=dtype.float32) inverse_jacobian = Net3() ans = inverse_jacobian(ty) expected = -np.log(y) tol = 1e-6 assert (np.abs(ans.asnumpy() - expected) < tol).all()