# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test_pynative_embeddinglookup """ import pytest import numpy as np import mindspore.ops.operations as op from mindspore import Tensor, context from mindspore.nn import Cell def setup_module(): context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend") class MetaFactory: def __init__(self): self.device_target = context.get_context('device_target') self.rank_size = None self.device_id = None self.global_rank_id = None class OpsFactory(MetaFactory): def __init__(self, dtype=np.float16): super().__init__() self.dtype = dtype if self.dtype == np.float16: self.loss = 1e-3 elif self.dtype == np.float32: self.loss = 1e-4 elif self.dtype == np.float64: self.loss = 1e-5 else: self.loss = 0 class EmbeddingLookup(Cell): def __init__(self, offset): super().__init__() self.op = op.EmbeddingLookup() self.offset = offset def construct(self, params, indices): x = self.op(params, indices, self.offset) return x class EmbeddingLookupFactory(OpsFactory): def __init__(self, params_shape, indices_shape, offset=0, low=0, high=2, dtype=np.float32, ids_type=np.int32): super().__init__(dtype=dtype) self.input_np = np.random.randn(*params_shape).astype(dtype) self.indices_np = np.random.randint(low, high, size=indices_shape).astype(ids_type) self.offset = offset self.output_grad_np = None def forward_mindspore_impl(self): net = EmbeddingLookup(self.offset) out = net(Tensor(self.input_np), Tensor(self.indices_np)) return out.asnumpy() @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_embeddinglookup_indices_outrange(): fact = EmbeddingLookupFactory(params_shape=(2, 4), indices_shape=(2, 3), low=1, high=3, offset=10, dtype=np.int8) out = fact.forward_mindspore_impl() out_expect = np.zeros((2, 3, 4)) np.allclose(out_expect, out)