# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import time import numpy as np import pytest import mindspore.nn as nn from mindspore import context, Tensor, ParameterTuple from mindspore.common import dtype as mstype from mindspore.common.initializer import TruncatedNormal from mindspore.nn.optim import Momentum from mindspore.nn.wrap.cell_wrapper import WithLossCell from mindspore.ops import composite as C from mindspore.ops import functional as F from mindspore.ops import operations as P np.random.seed(1) grad_by_list = C.GradOperation(get_by_list=True) def weight_variable(): """weight initial""" return TruncatedNormal(0.02) def conv(in_channels, out_channels, kernel_size, stride=1, padding=0): """weight initial for conv layer""" weight = weight_variable() return nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, weight_init=weight, has_bias=False, pad_mode="valid") def fc_with_initialize(input_channels, out_channels): """weight initial for fc layer""" weight = weight_variable() bias = weight_variable() return nn.Dense(input_channels, out_channels, weight, bias) class LeNet(nn.Cell): """ Lenet network Args: num_class (int): Num classes, Default: 10. Returns: Tensor, output tensor Examples: >>> LeNet(num_class=10) """ def __init__(self, num_class=10): super(LeNet, self).__init__() self.num_class = num_class self.batch_size = 32 self.conv1 = conv(1, 6, 5) self.conv2 = conv(6, 16, 5) self.fc1 = fc_with_initialize(16 * 5 * 5, 120) self.fc2 = fc_with_initialize(120, 84) self.fc3 = fc_with_initialize(84, self.num_class) self.relu = nn.ReLU() self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) self.reshape = P.Reshape() def construct(self, x): x = self.conv1(x) x = self.relu(x) x = self.max_pool2d(x) x = self.conv2(x) x = self.relu(x) x = self.max_pool2d(x) x = self.reshape(x, (self.batch_size, -1)) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) x = self.relu(x) x = self.fc3(x) return x class CrossEntropyLoss(nn.Cell): """ Define loss for network """ def __init__(self): super(CrossEntropyLoss, self).__init__() self.cross_entropy = P.SoftmaxCrossEntropyWithLogits() self.mean = P.ReduceMean() self.one_hot = P.OneHot() self.on_value = Tensor(1.0, mstype.float32) self.off_value = Tensor(0.0, mstype.float32) self.num = Tensor(32.0, mstype.float32) def construct(self, logits, label): label = self.one_hot(label, F.shape(logits)[1], self.on_value, self.off_value) loss = self.cross_entropy(logits, label)[0] loss = P.RealDiv()(P.ReduceSum()(loss, -1), self.num) return loss class GradWrap(nn.Cell): """ GradWrap definition """ def __init__(self, network): super(GradWrap, self).__init__() self.network = network self.weights = ParameterTuple(filter(lambda x: x.requires_grad, network.get_parameters())) def construct(self, x, label): weights = self.weights return grad_by_list(self.network, weights)(x, label) @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_cpu @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_ascend_pynative_lenet(): context.set_context(mode=context.PYNATIVE_MODE) epoch_size = 20 batch_size = 32 inputs = Tensor(np.ones([batch_size, 1, 32, 32]).astype(np.float32)) labels = Tensor(np.ones([batch_size]).astype(np.int32)) net = LeNet() criterion = CrossEntropyLoss() optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.1, 0.9) net_with_criterion = WithLossCell(net, criterion) train_network = GradWrap(net_with_criterion) train_network.set_train() total_time = 0 for epoch in range(0, epoch_size): start_time = time.time() fw_output = net(inputs) loss_output = criterion(fw_output, labels) grads = train_network(inputs, labels) optimizer(grads) end_time = time.time() cost_time = end_time - start_time total_time = total_time + cost_time print("======epoch: ", epoch, " loss: ", loss_output.asnumpy(), " cost time: ", cost_time) assert loss_output.asnumpy() < 0.004 assert loss_output.asnumpy() > 0.003 @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_cpu @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_pynative_lenet_with_new_interface(): context.set_context(mode=context.PYNATIVE_MODE) epoch_size = 20 batch_size = 32 inputs = Tensor(np.ones([batch_size, 1, 32, 32]).astype(np.float32)) labels = Tensor(np.ones([batch_size]).astype(np.int32)) net = LeNet() criterion = CrossEntropyLoss() net_with_criterion = WithLossCell(net, criterion) net_with_criterion.set_train() weights = ParameterTuple(filter(lambda x: x.requires_grad, net.get_parameters())) optimizer = Momentum(weights, 0.1, 0.9) forward_value_and_grad = nn.ForwardValueAndGrad(network=net_with_criterion, weights=weights, get_by_list=True) total_time = 0 for epoch in range(0, epoch_size): start_time = time.time() loss_output, grads = forward_value_and_grad(inputs, labels) optimizer(grads) end_time = time.time() cost_time = end_time - start_time total_time = total_time + cost_time print("======epoch: ", epoch, " loss: ", loss_output.asnumpy(), " cost time: ", cost_time) assert loss_output.asnumpy() < 0.005 assert loss_output.asnumpy() > 0.003