# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Train Mobilenetv2_quant on Cifar10""" import pytest import numpy as np from easydict import EasyDict as ed from mindspore import context from mindspore import Tensor from mindspore import nn from mindspore.train.model import Model from mindspore.compression.quant import QuantizationAwareTraining from mindspore.common import set_seed from dataset import create_dataset from lr_generator import get_lr from utils import Monitor, CrossEntropyWithLabelSmooth from mobilenetV2 import mobilenetV2 config_ascend_quant = ed({ "num_classes": 10, "image_height": 224, "image_width": 224, "batch_size": 200, "step_threshold": 10, "data_load_mode": "mindata", "epoch_size": 1, "start_epoch": 200, "warmup_epochs": 1, "lr": 0.3, "momentum": 0.9, "weight_decay": 4e-5, "label_smooth": 0.1, "loss_scale": 1024, "save_checkpoint": True, "save_checkpoint_epochs": 1, "keep_checkpoint_max": 300, "save_checkpoint_path": "./checkpoint", }) dataset_path = "/home/workspace/mindspore_dataset/cifar-10-batches-bin/" @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_single def test_mobilenetv2_quant(): set_seed(1) context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") config = config_ascend_quant print("training configure: {}".format(config)) epoch_size = config.epoch_size # define network network = mobilenetV2(num_classes=config.num_classes) # define loss if config.label_smooth > 0: loss = CrossEntropyWithLabelSmooth( smooth_factor=config.label_smooth, num_classes=config.num_classes) else: loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') # define dataset dataset = create_dataset(dataset_path=dataset_path, config=config, repeat_num=1, batch_size=config.batch_size) step_size = dataset.get_dataset_size() # convert fusion network to quantization aware network quantizer = QuantizationAwareTraining(bn_fold=True, per_channel=[True, False], symmetric=[True, False]) network = quantizer.quantize(network) # get learning rate lr = Tensor(get_lr(global_step=config.start_epoch * step_size, lr_init=0, lr_end=0, lr_max=config.lr, warmup_epochs=config.warmup_epochs, total_epochs=epoch_size + config.start_epoch, steps_per_epoch=step_size)) # define optimization opt = nn.Momentum(filter(lambda x: x.requires_grad, network.get_parameters()), lr, config.momentum, config.weight_decay) # define model model = Model(network, loss_fn=loss, optimizer=opt) print("============== Starting Training ==============") monitor = Monitor(lr_init=lr.asnumpy(), step_threshold=config.step_threshold) callback = [monitor] model.train(epoch_size, dataset, callbacks=callback, dataset_sink_mode=False) print("============== End Training ==============") export_time_used = 650 train_time = monitor.step_mseconds print('train_time_used:{}'.format(train_time)) assert train_time < export_time_used expect_avg_step_loss = 2.32 avg_step_loss = np.mean(np.array(monitor.losses)) print("average step loss:{}".format(avg_step_loss)) assert avg_step_loss < expect_avg_step_loss if __name__ == '__main__': test_mobilenetv2_quant()