# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test summary ops.""" import os import shutil import tempfile import numpy as np import pytest from mindspore import nn, Tensor, context from mindspore.common.initializer import Normal from mindspore.nn.metrics import Loss from mindspore.nn.optim import Momentum from mindspore.ops import operations as P from mindspore.train import Model from mindspore.train.summary.summary_record import _get_summary_tensor_data from tests.st.summary.dataset import create_mnist_dataset from tests.security_utils import security_off_wrap class LeNet5(nn.Cell): """LeNet network""" def __init__(self, num_class=10, num_channel=1, include_top=True): super(LeNet5, self).__init__() self.conv1 = nn.Conv2d(num_channel, 6, 5, pad_mode='valid') self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid') self.relu = nn.ReLU() self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) self.include_top = include_top if self.include_top: self.flatten = nn.Flatten() self.fc1 = nn.Dense(16 * 5 * 5, 120, weight_init=Normal(0.02)) self.fc2 = nn.Dense(120, 84, weight_init=Normal(0.02)) self.fc3 = nn.Dense(84, num_class, weight_init=Normal(0.02)) self.scalar_summary = P.ScalarSummary() self.image_summary = P.ImageSummary() self.tensor_summary = P.TensorSummary() self.channel = Tensor(num_channel) def construct(self, x): """construct""" self.image_summary('x', x) self.tensor_summary('x', x) x = self.conv1(x) x = self.relu(x) x = self.max_pool2d(x) x = self.conv2(x) x = self.relu(x) x = self.max_pool2d(x) if not self.include_top: return x x = self.flatten(x) x = self.relu(self.fc1(x)) x = self.relu(self.fc2(x)) x = self.fc3(x) self.scalar_summary('x_fc3', x[0][0]) return x class TestSummaryOps: """Test summary ops.""" base_summary_dir = '' @classmethod def setup_class(cls): """Run before test this class.""" device_id = int(os.getenv('DEVICE_ID')) if os.getenv('DEVICE_ID') else 0 context.set_context(mode=context.GRAPH_MODE, device_id=device_id) cls.base_summary_dir = tempfile.mkdtemp(suffix='summary') @classmethod def teardown_class(cls): """Run after test this class.""" if os.path.exists(cls.base_summary_dir): shutil.rmtree(cls.base_summary_dir) @pytest.mark.level0 @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard @security_off_wrap def test_summary_ops(self): """Test summary operators.""" ds_train = create_mnist_dataset('train', num_samples=1, batch_size=1) ds_train_iter = ds_train.create_dict_iterator() expected_data = next(ds_train_iter)['image'].asnumpy() net = LeNet5() loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean") optim = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) model = Model(net, loss_fn=loss, optimizer=optim, metrics={'loss': Loss()}) model.train(1, ds_train, dataset_sink_mode=False) summary_data = _get_summary_tensor_data() image_data = summary_data['x[:Image]'].asnumpy() tensor_data = summary_data['x[:Tensor]'].asnumpy() x_fc3 = summary_data['x_fc3[:Scalar]'].asnumpy() assert np.allclose(expected_data, image_data) assert np.allclose(expected_data, tensor_data) assert not np.allclose(0, x_fc3)