# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ @File : test_data_parallel_dense.py @Desc : test data parallel dense """ import numpy as np import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.common.api import _cell_graph_executor from mindspore.nn import Momentum from mindspore.nn import TrainOneStepCell, WithLossCell from mindspore.ops import operations as P from mindspore.context import ParallelMode class DenseMMNet(nn.Cell): """DenseMMNet definition""" def __init__(self): super(DenseMMNet, self).__init__() self.fc1 = nn.Dense(128, 768, activation='relu') self.fc2 = nn.Dense(128, 768, activation='relu') self.fc3 = nn.Dense(128, 768, activation='relu') self.fc4 = nn.Dense(768, 768, activation='relu') self.relu4 = nn.ReLU() self.relu5 = nn.ReLU() self.transpose = P.Transpose() self.matmul1 = P.MatMul() self.matmul2 = P.MatMul() def construct(self, x): q = self.fc1(x) k = self.fc2(x) v = self.fc3(x) k = self.transpose(k, (1, 0)) c = self.relu4(self.matmul1(q, k)) s = self.relu5(self.matmul2(c, v)) s = self.fc4(s) return s def test_data_parallel_dense(): """test_data_parallel_dense""" context.set_context(mode=context.GRAPH_MODE) context.reset_auto_parallel_context() context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True, device_num=8) inp = Tensor(np.ones([32, 128]).astype(np.float32) * 0.01) label = Tensor(np.zeros([32, 768]).astype(np.float32)) net = DenseMMNet() loss_fn = nn.SoftmaxCrossEntropyWithLogits() optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate=0.1, momentum=0.9) net = WithLossCell(net, loss_fn) net = TrainOneStepCell(net, optimizer) _cell_graph_executor.compile(net, inp, label) context.reset_auto_parallel_context()