# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ Testing AmplitudeToDB op in DE """ import numpy as np import pytest import mindspore.dataset as ds import mindspore.dataset.audio.transforms as c_audio from mindspore import log as logger from mindspore.dataset.audio.utils import ScaleType CHANNEL = 1 FREQ = 20 TIME = 15 def gen(shape): np.random.seed(0) data = np.random.random(shape) yield (np.array(data, dtype=np.float32),) def count_unequal_element(data_expected, data_me, rtol, atol): """ Precision calculation func """ assert data_expected.shape == data_me.shape total_count = len(data_expected.flatten()) error = np.abs(data_expected - data_me) greater = np.greater(error, atol + np.abs(data_expected) * rtol) loss_count = np.count_nonzero(greater) assert (loss_count / total_count) < rtol, "\ndata_expected_std:{0}\ndata_me_error:{1}\nloss:{2}".format( data_expected[greater], data_me[greater], error[greater]) def allclose_nparray(data_expected, data_me, rtol, atol, equal_nan=True): """ Precision calculation formula """ if np.any(np.isnan(data_expected)): assert np.allclose(data_me, data_expected, rtol, atol, equal_nan=equal_nan) elif not np.allclose(data_me, data_expected, rtol, atol, equal_nan=equal_nan): count_unequal_element(data_expected, data_me, rtol, atol) def test_func_amplitude_to_db_eager(): """ mindspore eager mode normal testcase:amplitude_to_db op""" logger.info("check amplitude_to_db op output") ndarr_in = np.array([[[[-0.2197528, 0.3821656]]], [[[0.57418776, 0.46741104]]], [[[-0.20381108, -0.9303914]]], [[[0.3693608, -0.2017813]]], [[[-1.727381, -1.3708513]]], [[[1.259975, 0.4981323]]], [[[0.76986176, -0.5793846]]]]).astype(np.float32) # cal from benchmark out_expect = np.array([[[[-84.17748, -4.177484]]], [[[-2.4094608, -3.3030105]]], [[[-100., -100.]]], [[[-4.325492, -84.32549]]], [[[-100., -100.]]], [[[1.0036192, -3.0265532]]], [[[-1.1358725, -81.13587]]]]).astype(np.float32) amplitude_to_db_op = c_audio.AmplitudeToDB() out_mindspore = amplitude_to_db_op(ndarr_in) allclose_nparray(out_mindspore, out_expect, 0.0001, 0.0001) def test_func_amplitude_to_db_pipeline(): """ mindspore pipeline mode normal testcase:amplitude_to_db op""" logger.info("test AmplitudeToDB op with default value") generator = gen([CHANNEL, FREQ, TIME]) data1 = ds.GeneratorDataset(source=generator, column_names=["multi_dimensional_data"]) transforms = [c_audio.AmplitudeToDB()] data1 = data1.map(operations=transforms, input_columns=["multi_dimensional_data"]) for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True): out_put = item["multi_dimensional_data"] assert out_put.shape == (CHANNEL, FREQ, TIME) def test_amplitude_to_db_invalid_input(): def test_invalid_input(test_name, stype, ref_value, amin, top_db, error, error_msg): logger.info("Test AmplitudeToDB with bad input: {0}".format(test_name)) with pytest.raises(error) as error_info: c_audio.AmplitudeToDB(stype=stype, ref_value=ref_value, amin=amin, top_db=top_db) assert error_msg in str(error_info.value) test_invalid_input("invalid stype parameter value", "test", 1.0, 1e-10, 80.0, TypeError, "Argument stype with value test is not of type [], but got .") test_invalid_input("invalid ref_value parameter value", ScaleType.POWER, -1.0, 1e-10, 80.0, ValueError, "Input ref_value is not within the required interval of (0, 16777216]") test_invalid_input("invalid amin parameter value", ScaleType.POWER, 1.0, -1e-10, 80.0, ValueError, "Input amin is not within the required interval of (0, 16777216]") test_invalid_input("invalid top_db parameter value", ScaleType.POWER, 1.0, 1e-10, -80.0, ValueError, "Input top_db is not within the required interval of (0, 16777216]") test_invalid_input("invalid stype parameter value", True, 1.0, 1e-10, 80.0, TypeError, "Argument stype with value True is not of type [], but got .") test_invalid_input("invalid ref_value parameter value", ScaleType.POWER, "value", 1e-10, 80.0, TypeError, "Argument ref_value with value value is not of type [, ], " + "but got ") test_invalid_input("invalid amin parameter value", ScaleType.POWER, 1.0, "value", -80.0, TypeError, "Argument amin with value value is not of type [, ], " + "but got ") test_invalid_input("invalid top_db parameter value", ScaleType.POWER, 1.0, 1e-10, "value", TypeError, "Argument top_db with value value is not of type [, ], " + "but got ") if __name__ == "__main__": test_func_amplitude_to_db_eager() test_func_amplitude_to_db_pipeline() test_amplitude_to_db_invalid_input()