# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import numpy as np import pytest import mindspore.dataset as ds import mindspore.dataset.audio.transforms as a_c_trans def count_unequal_element(data_expected, data_me, rtol, atol): assert data_expected.shape == data_me.shape total_count = len(data_expected.flatten()) error = np.abs(data_expected - data_me) greater = np.greater(error, atol + np.abs(data_expected) * rtol) loss_count = np.count_nonzero(greater) assert (loss_count / total_count) < rtol, "\ndata_expected_std:{0}\ndata_me_error:{1}\nloss:{2}".format( data_expected[greater], data_me[greater], error[greater]) def test_func_angle_001(): """ Eager Test """ arr = np.array([[73.04, -13.00], [57.49, 13.20], [-57.64, 6.51], [-52.25, 30.67], [-30.11, -18.34], [-63.32, 99.33], [95.82, -24.76]], dtype=np.double) expected = np.array([-0.17614017, 0.22569334, 3.02912684, 2.6107975, -2.59450886, 2.13831337, -0.25286988], dtype=np.double) angle_op = a_c_trans.Angle() output = angle_op(arr) count_unequal_element(expected, output, 0.0001, 0.0001) def test_func_angle_002(): """ Pipeline Test """ np.random.seed(6) arr = np.array([[[84.25, -85.92], [-92.23, 23.06], [-7.33, -44.17], [-62.95, -14.73]], [[93.09, 38.18], [-81.94, 71.34], [71.33, -39.00], [95.25, -32.94]]], dtype=np.double) expected = np.array([[-0.79521156, 2.89658848, -1.73524737, -2.91173309], [0.3892177, 2.42523905, -0.50034807, -0.33295219]], dtype=np.double) label = np.random.sample((2, 4, 1)) data = (arr, label) dataset = ds.NumpySlicesDataset(data, column_names=["col1", "col2"], shuffle=False) angle_op = a_c_trans.Angle() dataset = dataset.map(operations=angle_op, input_columns=["col1"]) for item1, item2 in zip(dataset.create_dict_iterator(output_numpy=True), expected): count_unequal_element(item2, item1['col1'], 0.0001, 0.0001) def test_func_angle_003(): """ Pipeline Error Test """ np.random.seed(78) arr = np.array([["11", "22"], ["33", "44"], ["55", "66"], ["77", "88"]]) label = np.random.sample((4, 1)) data = (arr, label) dataset = ds.NumpySlicesDataset(data, column_names=["col1", 'col2'], shuffle=False) angle_op = a_c_trans.Angle() dataset = dataset.map(operations=angle_op, input_columns=["col1"]) num_itr = 0 with pytest.raises(RuntimeError, match="input tensor type should be int, float or double"): for _ in dataset.create_dict_iterator(output_numpy=True): num_itr += 1 if __name__ == "__main__": test_func_angle_001() test_func_angle_002() test_func_angle_003()