# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ Testing Normalize op in DE """ import numpy as np import mindspore.dataset as ds import mindspore.dataset.transforms.py_transforms import mindspore.dataset.vision.c_transforms as c_vision import mindspore.dataset.vision.py_transforms as py_vision from mindspore import log as logger from util import diff_mse, visualize_image DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"] SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json" GENERATE_GOLDEN = False def normalizepad_np(image, mean, std): """ Apply the normalize+pad """ # DE decodes the image in RGB by default, hence # the values here are in RGB image = np.array(image, np.float32) image = image - np.array(mean) image = image * (1.0 / np.array(std)) zeros = np.zeros([image.shape[0], image.shape[1], 1], dtype=np.float32) output = np.concatenate((image, zeros), axis=2) return output def test_normalizepad_op_c(plot=False): """ Test NormalizePad in cpp transformations """ logger.info("Test Normalize in cpp") mean = [121.0, 115.0, 100.0] std = [70.0, 68.0, 71.0] # define map operations decode_op = c_vision.Decode() normalizepad_op = c_vision.NormalizePad(mean, std) # First dataset data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) data1 = data1.map(operations=decode_op, input_columns=["image"]) data1 = data1.map(operations=normalizepad_op, input_columns=["image"]) # Second dataset data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) data2 = data2.map(operations=decode_op, input_columns=["image"]) num_iter = 0 for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1, output_numpy=True), data2.create_dict_iterator(num_epochs=1, output_numpy=True)): image_de_normalized = item1["image"] image_original = item2["image"] image_np_normalized = normalizepad_np(image_original, mean, std) mse = diff_mse(image_de_normalized, image_np_normalized) logger.info("image_{}, mse: {}".format(num_iter + 1, mse)) assert mse < 0.01 if plot: visualize_image(image_original, image_de_normalized, mse, image_np_normalized) num_iter += 1 def test_normalizepad_op_py(plot=False): """ Test NormalizePad in python transformations """ logger.info("Test Normalize in python") mean = [0.475, 0.45, 0.392] std = [0.275, 0.267, 0.278] # define map operations transforms = [ py_vision.Decode(), py_vision.ToTensor() ] transform = mindspore.dataset.transforms.py_transforms.Compose(transforms) normalizepad_op = py_vision.NormalizePad(mean, std) # First dataset data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) data1 = data1.map(operations=transform, input_columns=["image"]) data1 = data1.map(operations=normalizepad_op, input_columns=["image"]) # Second dataset data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) data2 = data2.map(operations=transform, input_columns=["image"]) num_iter = 0 for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1, output_numpy=True), data2.create_dict_iterator(num_epochs=1, output_numpy=True)): image_de_normalized = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8) image_np_normalized = (normalizepad_np(item2["image"].transpose(1, 2, 0), mean, std) * 255).astype(np.uint8) image_original = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8) mse = diff_mse(image_de_normalized, image_np_normalized) logger.info("image_{}, mse: {}".format(num_iter + 1, mse)) assert mse < 0.01 if plot: visualize_image(image_original, image_de_normalized, mse, image_np_normalized) num_iter += 1 def test_decode_normalizepad_op(): """ Test Decode op followed by NormalizePad op """ logger.info("Test [Decode, Normalize] in one Map") data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image", "label"], num_parallel_workers=1, shuffle=False) # define map operations decode_op = c_vision.Decode() normalizepad_op = c_vision.NormalizePad([121.0, 115.0, 100.0], [70.0, 68.0, 71.0], "float16") # apply map operations on images data1 = data1.map(operations=[decode_op, normalizepad_op], input_columns=["image"]) num_iter = 0 for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True): logger.info("Looping inside iterator {}".format(num_iter)) assert item["image"].dtype == np.float16 num_iter += 1 def test_normalizepad_exception_unequal_size_c(): """ Test NormalizePad in c transformation: len(mean) != len(std) expected to raise ValueError """ logger.info("test_normalize_exception_unequal_size_c") try: _ = c_vision.NormalizePad([100, 250, 125], [50, 50, 75, 75]) except ValueError as e: logger.info("Got an exception in DE: {}".format(str(e))) assert str(e) == "Length of mean and std must be equal." try: _ = c_vision.NormalizePad([100, 250, 125], [50, 50, 75], 1) except TypeError as e: logger.info("Got an exception in DE: {}".format(str(e))) assert str(e) == "dtype should be string." try: _ = c_vision.NormalizePad([100, 250, 125], [50, 50, 75], "") except ValueError as e: logger.info("Got an exception in DE: {}".format(str(e))) assert str(e) == "dtype only support float32 or float16." def test_normalizepad_exception_unequal_size_py(): """ Test NormalizePad in python transformation: len(mean) != len(std) expected to raise ValueError """ logger.info("test_normalizepad_exception_unequal_size_py") try: _ = py_vision.NormalizePad([0.50, 0.30, 0.75], [0.18, 0.32, 0.71, 0.72]) except ValueError as e: logger.info("Got an exception in DE: {}".format(str(e))) assert str(e) == "Length of mean and std must be equal." try: _ = py_vision.NormalizePad([0.50, 0.30, 0.75], [0.18, 0.32, 0.71], 1) except TypeError as e: logger.info("Got an exception in DE: {}".format(str(e))) assert str(e) == "dtype should be string." try: _ = py_vision.NormalizePad([0.50, 0.30, 0.75], [0.18, 0.32, 0.71], "") except ValueError as e: logger.info("Got an exception in DE: {}".format(str(e))) assert str(e) == "dtype only support float32 or float16." def test_normalizepad_exception_invalid_range_py(): """ Test NormalizePad in python transformation: value is not in range [0,1] expected to raise ValueError """ logger.info("test_normalizepad_exception_invalid_range_py") try: _ = py_vision.NormalizePad([0.75, 1.25, 0.5], [0.1, 0.18, 1.32]) except ValueError as e: logger.info("Got an exception in DE: {}".format(str(e))) assert "Input mean_value is not within the required interval of [0.0, 1.0]." in str(e)