# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import copy import numpy as np import mindspore.dataset.text as text import mindspore.dataset as ds from mindspore.dataset.text import SentencePieceModel, to_str, SPieceTokenizerOutType VOCAB_FILE = "../data/dataset/test_sentencepiece/botchan.txt" DATA_FILE = "../data/dataset/testTokenizerData/sentencepiece_tokenizer.txt" def test_sentence_piece_tokenizer_callable(): vocab = text.SentencePieceVocab.from_file([VOCAB_FILE], 5000, 0.9995, SentencePieceModel.UNIGRAM, {}) tokenizer = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.STRING) data = '123' assert np.array_equal(tokenizer(data), ['▁', '12', '3']) def test_from_vocab_to_str_UNIGRAM(): vocab = text.SentencePieceVocab.from_file([VOCAB_FILE], 5000, 0.9995, SentencePieceModel.UNIGRAM, {}) tokenizer = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.STRING) dataset = ds.TextFileDataset(DATA_FILE, shuffle=False) dataset = dataset.map(operations=tokenizer) expect = ['▁I', '▁sa', 'w', '▁a', '▁girl', '▁with', '▁a', '▁te', 'les', 'co', 'pe', '.'] for i in dataset.create_dict_iterator(num_epochs=1, output_numpy=True): ret = to_str(i["text"]) for key, value in enumerate(ret): assert value == expect[key] def test_from_vocab_to_str_BPE(): vocab = text.SentencePieceVocab.from_file([VOCAB_FILE], 5000, 0.9995, SentencePieceModel.BPE, {}) tokenizer = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.STRING) dataset = ds.TextFileDataset(DATA_FILE, shuffle=False) dataset = dataset.map(operations=tokenizer) expect = ['▁I', '▁saw', '▁a', '▁girl', '▁with', '▁a', '▁te', 'les', 'c', 'ope', '.'] for i in dataset.create_dict_iterator(num_epochs=1, output_numpy=True): ret = to_str(i["text"]) for key, value in enumerate(ret): assert value == expect[key] def test_from_vocab_to_str_CHAR(): vocab = text.SentencePieceVocab.from_file([VOCAB_FILE], 5000, 0.9995, SentencePieceModel.CHAR, {}) tokenizer = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.STRING) dataset = ds.TextFileDataset(DATA_FILE, shuffle=False) dataset = dataset.map(operations=tokenizer) expect = ['▁', 'I', '▁', 's', 'a', 'w', '▁', 'a', '▁', 'g', 'i', 'r', 'l', '▁', 'w', 'i', 't', 'h',\ '▁', 'a', '▁', 't', 'e', 'l', 'e', 's', 'c', 'o', 'p', 'e', '.'] for i in dataset.create_dict_iterator(num_epochs=1, output_numpy=True): ret = to_str(i["text"]) for key, value in enumerate(ret): assert value == expect[key] def test_from_vocab_to_str_WORD(): vocab = text.SentencePieceVocab.from_file([VOCAB_FILE], 5000, 0.9995, SentencePieceModel.WORD, {}) tokenizer = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.STRING) dataset = ds.TextFileDataset(DATA_FILE, shuffle=False) dataset = dataset.map(operations=tokenizer) expect = ['▁I', '▁saw', '▁a', '▁girl', '▁with', '▁a', '▁telescope.'] for i in dataset.create_dict_iterator(num_epochs=1, output_numpy=True): ret = to_str(i["text"]) for key, value in enumerate(ret): assert value == expect[key] def test_from_vocab_to_int(): vocab = text.SentencePieceVocab.from_file([VOCAB_FILE], 5000, 0.9995, SentencePieceModel.UNIGRAM, {}) tokenizer = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.INT) dataset = ds.TextFileDataset(DATA_FILE, shuffle=False) dataset = dataset.map(operations=tokenizer) expect = [6, 329, 183, 8, 945, 23, 8, 3783, 4382, 4641, 1405, 4] for i in dataset.create_dict_iterator(num_epochs=1, output_numpy=True): ret = i["text"] for key, value in enumerate(ret): assert value == expect[key] def test_from_file_to_str(): vocab = text.SentencePieceVocab.from_file([VOCAB_FILE], 5000, 0.9995, SentencePieceModel.UNIGRAM, {}) text.SentencePieceVocab.save_model(vocab, "./", "m.model") tokenizer = text.SentencePieceTokenizer("./m.model", out_type=SPieceTokenizerOutType.STRING) dataset = ds.TextFileDataset(DATA_FILE, shuffle=False) dataset = dataset.map(operations=tokenizer) expect = ['▁I', '▁sa', 'w', '▁a', '▁girl', '▁with', '▁a', '▁te', 'les', 'co', 'pe', '.'] for i in dataset.create_dict_iterator(num_epochs=1, output_numpy=True): ret = to_str(i["text"]) for key, value in enumerate(ret): assert value == expect[key] def test_from_file_to_int(): vocab = text.SentencePieceVocab.from_file([VOCAB_FILE], 5000, 0.9995, SentencePieceModel.UNIGRAM, {}) text.SentencePieceVocab.save_model(vocab, "./", "m.model") tokenizer = text.SentencePieceTokenizer("./m.model", out_type=SPieceTokenizerOutType.INT) dataset = ds.TextFileDataset(DATA_FILE, shuffle=False) dataset = dataset.map(operations=tokenizer) expect = [6, 329, 183, 8, 945, 23, 8, 3783, 4382, 4641, 1405, 4] for i in dataset.create_dict_iterator(num_epochs=1, output_numpy=True): ret = i["text"] for key, value in enumerate(ret): assert value == expect[key] def test_build_from_dataset(): data = ds.TextFileDataset(VOCAB_FILE, shuffle=False) vocab = text.SentencePieceVocab.from_dataset(data, ["text"], 5000, 0.9995, SentencePieceModel.UNIGRAM, {}) tokenizer = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.STRING) dataset = ds.TextFileDataset(DATA_FILE, shuffle=False) dataset = dataset.map(operations=tokenizer) expect = ['▁I', '▁sa', 'w', '▁a', '▁girl', '▁with', '▁a', '▁te', 'les', 'co', 'pe', '.'] for i in dataset.create_dict_iterator(num_epochs=1, output_numpy=True): ret = to_str(i["text"]) for key, value in enumerate(ret): assert value == expect[key] def apply_func(dataset): input_columns = ['text'] output_columns = ['text2'] dataset = dataset.rename(input_columns, output_columns) return dataset def zip_test(dataset): dataset_1 = copy.deepcopy(dataset) dataset_2 = copy.deepcopy(dataset) dataset_1 = dataset_1.apply(apply_func) dataset_zip = ds.zip((dataset_1, dataset_2)) expect = ['▁I', '▁sa', 'w', '▁a', '▁girl', '▁with', '▁a', '▁te', 'les', 'co', 'pe', '.'] for i in dataset_zip.create_dict_iterator(num_epochs=1, output_numpy=True): ret = to_str(i["text"]) for key, value in enumerate(ret): assert value == expect[key] def concat_test(dataset): dataset_1 = copy.deepcopy(dataset) dataset = dataset.concat(dataset_1) expect = ['▁I', '▁sa', 'w', '▁a', '▁girl', '▁with', '▁a', '▁te', 'les', 'co', 'pe', '.'] for i in dataset.create_dict_iterator(num_epochs=1, output_numpy=True): ret = to_str(i["text"]) for key, value in enumerate(ret): assert value == expect[key] def test_with_zip_concat(): data = ds.TextFileDataset(VOCAB_FILE, shuffle=False) vocab = text.SentencePieceVocab.from_dataset(data, ["text"], 5000, 0.9995, SentencePieceModel.UNIGRAM, {}) tokenizer = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.STRING) dataset = ds.TextFileDataset(DATA_FILE, shuffle=False) dataset = dataset.map(operations=tokenizer, num_parallel_workers=2) zip_test(dataset) concat_test(dataset) if __name__ == "__main__": test_sentence_piece_tokenizer_callable() test_from_vocab_to_str_UNIGRAM() test_from_vocab_to_str_BPE() test_from_vocab_to_str_CHAR() test_from_vocab_to_str_WORD() test_from_vocab_to_int() test_from_file_to_str() test_from_file_to_int() test_build_from_dataset() test_with_zip_concat()