# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ @File : test_sparse_tensor.py @Author: @Date : 2020-07-16 @Desc : test mindspore sparse_tensor's operation """ import numpy as np import pytest import mindspore as ms import mindspore.nn as nn from mindspore.ops import composite as C from mindspore import Tensor, SparseTensor, context @pytest.fixture(scope="module", autouse=True) def setup_teardown(): context.set_context(mode=context.GRAPH_MODE, enable_sparse=True) yield context.set_context(enable_sparse=False) grad_op = C.GradOperation(get_all=True) class MakeSparseTensor(nn.Cell): def __init__(self, dense_shape): super(MakeSparseTensor, self).__init__() self.dense_shape = dense_shape def construct(self, indices, values): ret = (SparseTensor(indices, values, self.dense_shape),) return ret[0] def test_sparse_tensor_make_sparse_tensor(): indices = Tensor([[0, 1], [1, 2]]) values = Tensor([1, 2], dtype=ms.float32) MakeSparseTensor((3, 4))(indices, values) def test_sparse_tensor_attr(): class SparseTensorGetAttr(nn.Cell): def __init__(self): super(SparseTensorGetAttr, self).__init__() self.dense_shape = (3, 4) def construct(self, indices, values): x = SparseTensor(indices, values, self.dense_shape) return x.values, x.indices, x.dense_shape indices = Tensor([[0, 1], [1, 2]]) values = Tensor([1, 2], dtype=ms.float32) SparseTensorGetAttr()(indices, values) grad_op(SparseTensorGetAttr())(indices, values) def test_sparse_tensor_indices_dim_greater_than_dense_shape_dim(): indices = Tensor(np.array([[0, 0, 0], [0, 0, 1]], dtype=np.int32)) values = Tensor(np.array([100, 200], dtype=np.float32)) dense_shape = (2, 2) with pytest.raises(TypeError): MakeSparseTensor(dense_shape)(indices, values) def test_sparse_tensor_indices_dim_less_than_dense_shape_dim(): indices = Tensor(np.array([[0, 0], [0, 1]], dtype=np.int32)) values = Tensor(np.array([100, 200], dtype=np.float32)) dense_shape = (2, 2, 2) with pytest.raises(TypeError): MakeSparseTensor(dense_shape)(indices, values) def test_sparse_tensor_to_tensor(): class SparseToDenseCell(nn.Cell): def __init__(self, dense_shape): super(SparseToDenseCell, self).__init__() self.dense_shape = dense_shape self.sparse_to_dense = nn.SparseToDense() def construct(self, indices, values): sparse = SparseTensor(indices, values, self.dense_shape) return self.sparse_to_dense(sparse) indices = Tensor([[0, 1], [1, 2]]) values = Tensor([1, 2], dtype=ms.float32) dense_shape = (3, 4) SparseToDenseCell(dense_shape)(indices, values) grad_op(SparseToDenseCell(dense_shape))(indices, values)