# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # """test_confusion_matrix_metric""" import numpy as np import pytest from mindspore import Tensor from mindspore.nn.metrics import ConfusionMatrixMetric def test_confusion_matrix_metric(): """test_confusion_matrix_metric""" metric = ConfusionMatrixMetric(skip_channel=True, metric_name="tpr", calculation_method=False) metric.clear() x = Tensor(np.array([[[0], [1]], [[1], [0]]])) y = Tensor(np.array([[[0], [1]], [[0], [1]]])) metric.update(x, y) x = Tensor(np.array([[[0], [1]], [[1], [0]]])) y = Tensor(np.array([[[0], [1]], [[1], [0]]])) metric.update(x, y) output = metric.eval() assert np.allclose(output, np.array([0.75])) def test_confusion_matrix_metric_update_len(): x = Tensor(np.array([[0.2, 0.5, 0.7], [0.3, 0.1, 0.2], [0.9, 0.6, 0.5]])) metric = ConfusionMatrixMetric(skip_channel=True, metric_name="ppv", calculation_method=True) metric.clear() with pytest.raises(ValueError): metric.update(x) def test_confusion_matrix_metric_update_dim(): x = Tensor(np.array([[0.2, 0.5, 0.7], [0.3, 0.1, 0.2], [0.9, 0.6, 0.5]])) y = Tensor(np.array([1, 0])) metric = ConfusionMatrixMetric(skip_channel=True, metric_name="tnr", calculation_method=True) metric.clear() with pytest.raises(ValueError): metric.update(y, x) def test_confusion_matrix_metric_init_skip_channel(): with pytest.raises(TypeError): ConfusionMatrixMetric(skip_channel=1) def test_confusion_matrix_metric_init_compute_sample(): with pytest.raises(TypeError): ConfusionMatrixMetric(calculation_method=1) def test_confusion_matrix_metric_init_metric_name_type(): with pytest.raises(TypeError): metric = ConfusionMatrixMetric(skip_channel=True, metric_name=1, calculation_method=False) x = Tensor(np.array([[[0], [1]], [[1], [0]]])) y = Tensor(np.array([[[0], [1]], [[1], [0]]])) metric.update(x, y) output = metric.eval() assert np.allclose(output, np.array([0.75])) def test_confusion_matrix_metric_init_metric_name_str(): with pytest.raises(NotImplementedError): metric = ConfusionMatrixMetric(skip_channel=True, metric_name="wwwww", calculation_method=False) x = Tensor(np.array([[[0], [1]], [[1], [0]]])) y = Tensor(np.array([[[0], [1]], [[1], [0]]])) metric.update(x, y) output = metric.eval() assert np.allclose(output, np.array([0.75])) def test_confusion_matrix_metric_runtime(): metric = ConfusionMatrixMetric(skip_channel=True, metric_name="tnr", calculation_method=True) metric.clear() with pytest.raises(RuntimeError): metric.eval()