# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """utils for test""" import os import re import string import collections import json import numpy as np from mindspore import log as logger def get_data(dir_name): """ Return raw data of imagenet dataset. Args: dir_name (str): String of imagenet dataset's path. Returns: List """ if not os.path.isdir(dir_name): raise IOError("Directory {} not exists".format(dir_name)) img_dir = os.path.join(dir_name, "images") ann_file = os.path.join(dir_name, "annotation.txt") with open(ann_file, "r") as file_reader: lines = file_reader.readlines() data_list = [] for line in lines: try: filename, label = line.split(",") label = label.strip("\n") with open(os.path.join(img_dir, filename), "rb") as file_reader: img = file_reader.read() data_json = {"file_name": filename, "data": img, "label": int(label)} data_list.append(data_json) except FileNotFoundError: continue return data_list def get_two_bytes_data(file_name): """ Return raw data of two-bytes dataset. Args: file_name (str): String of two-bytes dataset's path. Returns: List """ if not os.path.exists(file_name): raise IOError("map file {} not exists".format(file_name)) dir_name = os.path.dirname(file_name) with open(file_name, "r") as file_reader: lines = file_reader.readlines() data_list = [] row_num = 0 for line in lines: try: img, label = line.strip('\n').split(" ") with open(os.path.join(dir_name, img), "rb") as file_reader: img_data = file_reader.read() with open(os.path.join(dir_name, label), "rb") as file_reader: label_data = file_reader.read() data_json = {"file_name": img, "img_data": img_data, "label_name": label, "label_data": label_data, "id": row_num } row_num += 1 data_list.append(data_json) except FileNotFoundError: continue return data_list def get_multi_bytes_data(file_name, bytes_num=3): """ Return raw data of multi-bytes dataset. Args: file_name (str): String of multi-bytes dataset's path. bytes_num (int): Number of bytes fields. Returns: List """ if not os.path.exists(file_name): raise IOError("map file {} not exists".format(file_name)) dir_name = os.path.dirname(file_name) with open(file_name, "r") as file_reader: lines = file_reader.readlines() data_list = [] row_num = 0 for line in lines: try: img10_path = line.strip('\n').split(" ") img5 = [] for path in img10_path[:bytes_num]: with open(os.path.join(dir_name, path), "rb") as file_reader: img5 += [file_reader.read()] data_json = {"image_{}".format(i): img5[i] for i in range(len(img5))} data_json.update({"id": row_num}) row_num += 1 data_list.append(data_json) except FileNotFoundError: continue return data_list def get_mkv_data(dir_name): """ Return raw data of Vehicle_and_Person dataset. Args: dir_name (str): String of Vehicle_and_Person dataset's path. Returns: List """ if not os.path.isdir(dir_name): raise IOError("Directory {} not exists".format(dir_name)) img_dir = os.path.join(dir_name, "Image") label_dir = os.path.join(dir_name, "prelabel") data_list = [] file_list = os.listdir(label_dir) index = 1 for file in file_list: if os.path.splitext(file)[1] == '.json': file_path = os.path.join(label_dir, file) image_name = ''.join([os.path.splitext(file)[0], ".jpg"]) image_path = os.path.join(img_dir, image_name) with open(file_path, "r") as load_f: load_dict = json.load(load_f) if os.path.exists(image_path): with open(image_path, "rb") as file_reader: img = file_reader.read() data_json = {"file_name": image_name, "prelabel": str(load_dict), "data": img, "id": index} data_list.append(data_json) index += 1 logger.info('{} images are missing'.format(len(file_list) - len(data_list))) return data_list def get_nlp_data(dir_name, vocab_file, num): """ Return raw data of aclImdb dataset. Args: dir_name (str): String of aclImdb dataset's path. vocab_file (str): String of dictionary's path. num (int): Number of sample. Returns: List """ if not os.path.isdir(dir_name): raise IOError("Directory {} not exists".format(dir_name)) for root, _, files in os.walk(dir_name): for index, file_name_extension in enumerate(files): if index < num: file_path = os.path.join(root, file_name_extension) file_name, _ = file_name_extension.split('.', 1) id_, rating = file_name.split('_', 1) with open(file_path, 'r') as f: raw_content = f.read() dictionary = load_vocab(vocab_file) vectors = [dictionary.get('[CLS]')] vectors += [dictionary.get(i) if i in dictionary else dictionary.get('[UNK]') for i in re.findall(r"[\w']+|[{}]" .format(string.punctuation), raw_content)] vectors += [dictionary.get('[SEP]')] input_, mask, segment = inputs(vectors) input_ids = np.reshape(np.array(input_), [1, -1]) input_mask = np.reshape(np.array(mask), [1, -1]) segment_ids = np.reshape(np.array(segment), [1, -1]) data = { "label": 1, "id": id_, "rating": float(rating), "input_ids": input_ids, "input_mask": input_mask, "segment_ids": segment_ids } yield data def convert_to_uni(text): if isinstance(text, str): return text if isinstance(text, bytes): return text.decode('utf-8', 'ignore') raise Exception("The type %s does not convert!" % type(text)) def load_vocab(vocab_file): """load vocabulary to translate statement.""" vocab = collections.OrderedDict() vocab.setdefault('blank', 2) index = 0 with open(vocab_file) as reader: while True: tmp = reader.readline() if not tmp: break token = convert_to_uni(tmp) token = token.strip() vocab[token] = index index += 1 return vocab def inputs(vectors, maxlen=50): length = len(vectors) if length > maxlen: return vectors[0:maxlen], [1] * maxlen, [0] * maxlen input_ = vectors + [0] * (maxlen - length) mask = [1] * length + [0] * (maxlen - length) segment = [0] * maxlen return input_, mask, segment