# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test adam """ import numpy as np import pytest import mindspore.nn as nn from mindspore import Tensor, Parameter, context from mindspore.common.api import _cell_graph_executor from mindspore.nn import TrainOneStepCell, WithLossCell from mindspore.nn.optim import Adam, AdamWeightDecay from mindspore.ops import operations as P @pytest.fixture(scope="module", autouse=True) def setup_teardown(): context.set_context(enable_sparse=True) yield context.set_context(enable_sparse=False) class Net(nn.Cell): """ Net definition """ def __init__(self): super(Net, self).__init__() self.weight = Parameter(Tensor(np.ones([64, 10]).astype(np.float32)), name="weight") self.bias = Parameter(Tensor(np.ones([10]).astype((np.float32))), name="bias") self.matmul = P.MatMul() self.biasAdd = P.BiasAdd() def construct(self, x): x = self.biasAdd(self.matmul(x, self.weight), self.bias) return x class NetWithoutWeight(nn.Cell): def __init__(self): super(NetWithoutWeight, self).__init__() self.matmul = P.MatMul() def construct(self, x): x = self.matmul(x, x) return x class NetWithSparseGatherV2(nn.Cell): """ NetWithSparseGatherV2 definition """ def __init__(self): super(NetWithSparseGatherV2, self).__init__() self.weight1 = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="weight1") self.weight2 = Parameter(Tensor(np.ones([2, 1, 2]).astype((np.float32))), name="weight2") self.axis = 0 self.gather = P.SparseGatherV2() def construct(self, indices, label): return self.gather(self.weight1, indices, self.axis) + self.weight2 def test_adamwithoutparam(): net = NetWithoutWeight() net.set_train() with pytest.raises(ValueError, match=r"Optimizer got an empty parameters list"): AdamWeightDecay(net.trainable_params(), learning_rate=0.1) def test_adamw_compile(): """ test_adamw_compile """ inputs = Tensor(np.ones([1, 64]).astype(np.float32)) label = Tensor(np.zeros([1, 10]).astype(np.float32)) net = Net() net.set_train() loss = nn.SoftmaxCrossEntropyWithLogits() optimizer = AdamWeightDecay(net.trainable_params(), learning_rate=0.1) net_with_loss = WithLossCell(net, loss) train_network = TrainOneStepCell(net_with_loss, optimizer) _cell_graph_executor.compile(train_network, inputs, label) def test_adam_compile(): """ test adam compile """ inputs = Tensor(np.ones([1, 64]).astype(np.float32)) label = Tensor(np.zeros([1, 10]).astype(np.float32)) net = Net() net.set_train() loss = nn.SoftmaxCrossEntropyWithLogits() optimizer = Adam(net.trainable_params(), learning_rate=0.1, weight_decay=0.9) net_with_loss = WithLossCell(net, loss) train_network = TrainOneStepCell(net_with_loss, optimizer) _cell_graph_executor.compile(train_network, inputs, label) def test_sparse_adam_compile(): """ test_sparse_adam_compile """ indices = Tensor(np.array([0, 1]).astype(np.int32)) label = Tensor(np.zeros([2, 1, 2]).astype(np.float32)) net = NetWithSparseGatherV2() net.set_train() optimizer = Adam(net.trainable_params(), learning_rate=0.1, loss_scale=1024.0, weight_decay=0.9) optimizer.target = 'CPU' train_network = TrainOneStepCell(net, optimizer) _cell_graph_executor.compile(train_network, indices, label) def test_sparse_adam(): """ test_sparse_adam """ indices = Tensor(np.array([0, 1]).astype(np.int32)) label = Tensor(np.zeros([2, 1, 2]).astype(np.float32)) net = NetWithSparseGatherV2() net.set_train() optimizer = Adam(net.trainable_params(), learning_rate=0.1, loss_scale=1024.0, weight_decay=0.9) train_network = TrainOneStepCell(net, optimizer) _cell_graph_executor.compile(train_network, indices, label) def test_adam_group1(): """ test_adam_group_lr_and_weight_decay """ inputs = Tensor(np.ones([1, 64]).astype(np.float32)) label = Tensor(np.zeros([1, 10]).astype(np.float32)) net = Net() net.set_train() loss = nn.SoftmaxCrossEntropyWithLogits() net_with_loss = WithLossCell(net, loss) all_params = net.trainable_params() poly_decay_lr = nn.polynomial_decay_lr(0.01, 0.0001, total_step=10, step_per_epoch=1, decay_epoch=3, power=1.0) group_params = [{'params': [all_params[0]], 'lr': poly_decay_lr, 'weight_decay': 0.9}, {'params': [all_params[1]]}] optimizer = nn.Adam(group_params, learning_rate=0.1) train_network = TrainOneStepCell(net_with_loss, optimizer) _cell_graph_executor.compile(train_network, inputs, label) def test_adam_group2(): """ test_adam_group_lr_and_weight_decay """ inputs = Tensor(np.ones([1, 64]).astype(np.float32)) label = Tensor(np.zeros([1, 10]).astype(np.float32)) net = Net() net.set_train() loss = nn.SoftmaxCrossEntropyWithLogits() net_with_loss = WithLossCell(net, loss) all_params = net.trainable_params() schedule_lr = nn.PolynomialDecayLR(0.01, 0.0001, 3, power=1.0) group_params = [{'params': [all_params[0]], 'lr': 0.02, 'weight_decay': 0.9}, {'params': [all_params[1]]}] optimizer = nn.Adam(group_params, learning_rate=schedule_lr) train_network = TrainOneStepCell(net_with_loss, optimizer) _cell_graph_executor.compile(train_network, inputs, label) def test_adamweightdecay_group(): """ test_adam_group_lr_and_weight_decay """ inputs = Tensor(np.ones([1, 64]).astype(np.float32)) label = Tensor(np.zeros([1, 10]).astype(np.float32)) net = Net() net.set_train() loss = nn.SoftmaxCrossEntropyWithLogits() net_with_loss = WithLossCell(net, loss) all_params = net.trainable_params() schedule_lr = nn.PolynomialDecayLR(0.01, 0.0001, 3, power=1.0) group_params = [{'params': [all_params[0]], 'lr': 0.02, 'weight_decay': 0.9}, {'params': [all_params[1]]}] optimizer = nn.AdamWeightDecay(group_params, learning_rate=schedule_lr) train_network = TrainOneStepCell(net_with_loss, optimizer) _cell_graph_executor.compile(train_network, inputs, label) def test_adamoffload_group(): """ test_adam_group_lr_and_weight_decay """ inputs = Tensor(np.ones([1, 64]).astype(np.float32)) label = Tensor(np.zeros([1, 10]).astype(np.float32)) net = Net() net.set_train() loss = nn.SoftmaxCrossEntropyWithLogits() net_with_loss = WithLossCell(net, loss) all_params = net.trainable_params() schedule_lr = nn.PolynomialDecayLR(0.01, 0.0001, 3, power=1.0) group_params = [{'params': [all_params[0]], 'lr': 0.02, 'weight_decay': 0.9}, {'params': [all_params[1]]}] optimizer = nn.AdamOffload(group_params, learning_rate=schedule_lr) train_network = TrainOneStepCell(net_with_loss, optimizer) _cell_graph_executor.compile(train_network, inputs, label) def test_AdamWeightDecay_beta1(): net = Net() with pytest.raises(ValueError): AdamWeightDecay(net.get_parameters(), beta1=1.0, learning_rate=0.1) def test_AdamWeightDecay_beta2(): net = Net() with pytest.raises(ValueError): AdamWeightDecay(net.get_parameters(), beta2=1.0, learning_rate=0.1) def test_AdamWeightDecay_e(): net = Net() with pytest.raises(ValueError): AdamWeightDecay(net.get_parameters(), eps=-0.1, learning_rate=0.1) def test_adam_mindspore_with_empty_params(): net = nn.Flatten() with pytest.raises(ValueError, match=r"Optimizer got an empty parameters list"): AdamWeightDecay(net.get_parameters())