# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test FTRL """ import pytest import numpy as np import mindspore.nn as nn from mindspore import Tensor, Parameter, context from mindspore.common.api import _cell_graph_executor from mindspore.nn import TrainOneStepCell, WithLossCell from mindspore.nn.optim import FTRL from mindspore.ops import operations as P @pytest.fixture(scope="module", autouse=True) def setup_teardown(): context.set_context(enable_sparse=True) yield context.set_context(enable_sparse=False) class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.weight = Parameter(Tensor(np.ones([64, 10]).astype(np.float32)), name='weight') self.bias = Parameter(Tensor(np.ones([10]).astype(np.float32)), name='bias') self.matmul = P.MatMul() self.biasAdd = P.BiasAdd() def construct(self, x): x = self.biasAdd(self.matmul(x, self.weight), self.bias) return x class NetWithSparseGatherV2(nn.Cell): """ NetWithSparseGatherV2 definition """ def __init__(self): super(NetWithSparseGatherV2, self).__init__() self.weight1 = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="weight1") self.weight2 = Parameter(Tensor(np.ones([2, 1, 2]).astype((np.float32))), name="weight2") self.axis = 0 self.gather = P.SparseGatherV2() def construct(self, indices, label): return self.gather(self.weight1, indices, self.axis) + self.weight2 def test_ftrl(): """ test_ftrl """ inputs = Tensor(np.ones([1, 64]).astype(np.float32)) label = Tensor(np.zeros([1, 10]).astype(np.float32)) net = Net() net.set_train() loss = nn.SoftmaxCrossEntropyWithLogits() optimizer = FTRL(net.trainable_params(), weight_decay=0.9, loss_scale=2.0) net_with_loss = WithLossCell(net, loss) train_network = TrainOneStepCell(net_with_loss, optimizer) _cell_graph_executor.compile(train_network, inputs, label) def test_spares_ftrl_compile(): """ test sparse ftrl compile """ indices = Tensor(np.array([0, 1]).astype(np.int32)) label = Tensor(np.zeros([2, 1, 2]).astype(np.float32)) net = NetWithSparseGatherV2() net.set_train() optimizer = FTRL(net.trainable_params(), weight_decay=0.9, loss_scale=2.0) optimizer.target = 'CPU' train_network = TrainOneStepCell(net, optimizer) _cell_graph_executor.compile(train_network, indices, label) def test_spares_ftrl(): """ test sparse ftrl""" indices = Tensor(np.array([0, 1]).astype(np.int32)) label = Tensor(np.zeros([2, 1, 2]).astype(np.float32)) net = NetWithSparseGatherV2() net.set_train() optimizer = FTRL(net.trainable_params(), weight_decay=0.9, loss_scale=2.0) optimizer.target = 'Ascend' train_network = TrainOneStepCell(net, optimizer) _cell_graph_executor.compile(train_network, indices, label)