# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ Test nn.probability.distribution. """ import pytest import mindspore.nn as nn import mindspore.nn.probability.distribution as msd from mindspore import dtype as mstype from mindspore import Tensor from mindspore import context func_name_list = ['prob', 'log_prob', 'cdf', 'log_cdf', 'survival_function', 'log_survival', 'sd', 'var', 'mode', 'mean', 'entropy', 'kl_loss', 'cross_entropy', 'sample'] class MyExponential(msd.Distribution): """ Test distribution class: no function is implemented. """ def __init__(self, rate=None, seed=None, dtype=mstype.float32, name="MyExponential"): param = dict(locals()) param['param_dict'] = {'rate': rate} super(MyExponential, self).__init__(seed, dtype, name, param) class Net(nn.Cell): """ Test Net: function called through construct. """ def __init__(self, func_name): super(Net, self).__init__() self.dist = MyExponential() self.name = func_name def construct(self, *args, **kwargs): return self.dist(self.name, *args, **kwargs) def test_raise_not_implemented_error_construct(): """ test raise not implemented error in pynative mode. """ value = Tensor([0.2], dtype=mstype.float32) for func_name in func_name_list: with pytest.raises(NotImplementedError): net = Net(func_name) net(value) def test_raise_not_implemented_error_construct_graph_mode(): """ test raise not implemented error in graph mode. """ context.set_context(mode=context.GRAPH_MODE) value = Tensor([0.2], dtype=mstype.float32) for func_name in func_name_list: with pytest.raises(NotImplementedError): net = Net(func_name) net(value) class Net1(nn.Cell): """ Test Net: function called directly. """ def __init__(self, func_name): super(Net1, self).__init__() self.dist = MyExponential() self.func = getattr(self.dist, func_name) def construct(self, *args, **kwargs): return self.func(*args, **kwargs) def test_raise_not_implemented_error(): """ test raise not implemented error in pynative mode. """ value = Tensor([0.2], dtype=mstype.float32) for func_name in func_name_list: with pytest.raises(NotImplementedError): net = Net1(func_name) net(value) def test_raise_not_implemented_error_graph_mode(): """ test raise not implemented error in graph mode. """ context.set_context(mode=context.GRAPH_MODE) value = Tensor([0.2], dtype=mstype.float32) for func_name in func_name_list: with pytest.raises(NotImplementedError): net = Net1(func_name) net(value)