# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test ops """ import functools import pytest import numpy as np import mindspore.nn as nn import mindspore.ops.composite as C from mindspore import Tensor from mindspore import ops, Parameter, context from mindspore import ms_function from mindspore.common import dtype as mstype from mindspore.ops import functional as F from mindspore.ops import operations as P from mindspore.ops.operations import _grad_ops as G from mindspore.ops.operations import _inner_ops as inner from mindspore.ops.operations import _quant_ops as Q from mindspore.ops.operations import nn_ops as nps from mindspore.nn.layer import normalization from mindspore._c_expression import security from tests.security_utils import security_off_wrap from ..ut_filter import non_graph_engine from ....mindspore_test_framework.mindspore_test import mindspore_test from ....mindspore_test_framework.pipeline.forward.compile_forward \ import (pipeline_for_compile_forward_ge_graph_for_case_by_case_config, pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception) from ....mindspore_test_framework.pipeline.gradient.compile_gradient \ import pipeline_for_compile_grad_ge_graph_for_case_by_case_config from ....ops_common import convert grad_all_with_sens = C.GradOperation(get_all=True, sens_param=True) class TargetNet(nn.Cell): def __init__(self): super(TargetNet, self).__init__() self.mul = P.Mul() def construct(self, x, y): return self.mul(x, y) # Recursive GradOperation in Cell. class Grad(nn.Cell): def __init__(self, network): super(Grad, self).__init__() self.grad = C.GradOperation() self.network = network def construct(self, x, y): return self.grad(self.network)(x, y) # Recursive GradOperaton with GradOperation object. grad1 = C.GradOperation() @ms_function def f1(x, y): return grad1(grad1(TargetNet()))(x, y) # Recursive GradOperaton with F.grad. @ms_function def f2(x, y): return F.grad(F.grad(TargetNet()))(x, y) def test_recursive_grad(): x = Tensor(3, mstype.float32) y = Tensor(1, mstype.float32) Grad(Grad(TargetNet()))(x, y) f1(x, y) f2(x, y) class IndexAdd(nn.Cell): """IndexAdd net definition""" def __init__(self, axis): super(IndexAdd, self).__init__() self.index_add = P.IndexAdd(axis) self.input_x = Parameter(Tensor(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]).astype(np.float32))) def construct(self, indices, updates): return self.index_add(self.input_x, indices, updates) class InputBackward(nn.Cell): def __init__(self, network): super(InputBackward, self).__init__() self.network = network self.network.set_train() self.grad = grad_all_with_sens def construct(self, x1, x2, x3, sens): return self.grad(self.network)(x1, x2, x3, sens) class NetForTupleInput(nn.Cell): def __init__(self, op): super(NetForTupleInput, self).__init__() self.op = op def construct(self, x1, x2): return self.op((x1, x2)) class StridedSlicessdNet(nn.Cell): def __init__(self): super(StridedSlicessdNet, self).__init__() self.rank = P.Rank() def construct(self, x1): return P.StridedSlice(1, 1, 0, self.rank(x1), 0)(x1, (0, 0), (0, 0), (1, 1)) class NetForConcat(nn.Cell): def __init__(self): super(NetForConcat, self).__init__() self.concat = P.Concat() def construct(self, x1): return self.concat((x1, x1)) class NetForConcat1(nn.Cell): def __init__(self): super(NetForConcat1, self).__init__() self.concat = P.Concat() def construct(self, x1, x2): return self.concat((x1, x2)) class NetForConcat2(nn.Cell): def __init__(self): super(NetForConcat2, self).__init__() self.concat = P.Concat(axis=2) def construct(self, x1, x2): return self.concat((x1, x2)) class NetForConcat3(nn.Cell): def __init__(self): super(NetForConcat3, self).__init__() self.concat = P.Concat(axis=0) def construct(self, x1, x2, x3): return self.concat((x1, x2, x3)) class NetForConcat4(nn.Cell): def __init__(self): super(NetForConcat4, self).__init__() self.concat = P.Concat(axis=-1) def construct(self, x1, x2, x3): return self.concat((x1, x2, x3)) class NetForStackInput(nn.Cell): def __init__(self, op): super(NetForStackInput, self).__init__() self.op = op self.mul = P.Mul() def construct(self, *args): t = () for element in args: t = t + (self.mul(element, element),) return self.op(t) class NetForUnpackInput(nn.Cell): def __init__(self, op): super(NetForUnpackInput, self).__init__() self.op = op self.mul = P.Mul() def construct(self, x1): return self.op((self.mul(x1, x1))) class NetForFlatten(nn.Cell): def __init__(self): super(NetForFlatten, self).__init__() self.flatten = P.Flatten() def construct(self, x, y): return self.flatten(x) + y class NetForFlatten0D(nn.Cell): def __init__(self): super(NetForFlatten0D, self).__init__() self.flatten = P.Flatten() def construct(self, x): return self.flatten(x) class NetForFlattenComposed(nn.Cell): # make flatten op together with other ops for testing flatten grad def __init__(self): super(NetForFlattenComposed, self).__init__() self.flatten = P.Flatten() def construct(self, x, y): return self.flatten(x + x) + y class ArgmaxNet(nn.Cell): def __init__(self): super(ArgmaxNet, self).__init__() self.argmax = P.Argmax(axis=1) def construct(self, input_): return self.argmax(input_) class ArgminNet(nn.Cell): def __init__(self): super(ArgminNet, self).__init__() self.argmin = P.Argmin(axis=1) def construct(self, input_): return self.argmin(input_) class CumSumNet(nn.Cell): def __init__(self): super(CumSumNet, self).__init__() self.cumsum = P.CumSum() self.axis = 1 def construct(self, input_): return self.cumsum(input_, self.axis) class SummaryNet(nn.Cell): def __init__(self): super(SummaryNet, self).__init__() self.s = P.ScalarSummary() self.add = P.Add() def construct(self, x, y): self.s("x1", x) return self.add(x, y) class HistogramSummaryNet(nn.Cell): def __init__(self): super(HistogramSummaryNet, self).__init__() self.summary = P.HistogramSummary() self.add = P.Add() def construct(self, x, y): out = self.add(x, y) string_in = "out" self.summary(string_in, out) return out class Moments(nn.Cell): """Moments net definition""" def __init__(self, axis=None, keep_dims=None): super(Moments, self).__init__() self.moments = nn.Moments(axis=axis, keep_dims=keep_dims) def construct(self, input_x): mean, variance = self.moments(input_x) return mean, variance class BatchNorm3d(nn.Cell): """BatchNorm3d net definition""" def __init__(self, num_features): super(BatchNorm3d, self).__init__() self.bn3d = normalization.BatchNorm3d(num_features=num_features) def construct(self, input_x): bn3d_out = self.bn3d(input_x) return bn3d_out class NLLLoss(nn.Cell): """NLLLoss net definition""" def __init__(self, reduction): super(NLLLoss, self).__init__() self.nll_loss = P.NLLLoss(reduction=reduction) def construct(self, input_x, target, weight): loss = self.nll_loss(input_x, target, weight) return loss class ClipByNorm(nn.Cell): """ClipByNorm net definition""" def __init__(self, axis=None): super(ClipByNorm, self).__init__() self.clip_by_norm = nn.ClipByNorm(axis=axis) def construct(self, input_x, max_norm): norm = self.clip_by_norm(input_x, max_norm) return norm class ClipByGlobalNorm(nn.Cell): """ClipByGlobalNorm net definition""" def __init__(self, x, clip_norm=1.0, use_norm=None): super(ClipByGlobalNorm, self).__init__() self.x = x self.clip_norm = clip_norm self.use_norm = use_norm def construct(self): norm = C.clip_by_global_norm(self.x, self.clip_norm, self.use_norm) return norm class Embedding(nn.Cell): """Embedding net definition""" def __init__(self, vocab_size, embedding_size, padding_idx=None): super(Embedding, self).__init__() self.embedding = nn.Embedding(vocab_size=vocab_size, embedding_size=embedding_size, padding_idx=padding_idx) def construct(self, index): res = self.embedding(index) return res class EmbeddingLookup(nn.Cell): """EmbeddingLookup net definition""" def __init__(self, vocab_size, embedding_size, max_norm=None): super(EmbeddingLookup, self).__init__() self.embedding_lookup = nn.EmbeddingLookup(vocab_size=vocab_size, embedding_size=embedding_size, max_norm=max_norm) def construct(self, index): res = self.embedding_lookup(index) return res class CountNonZero(nn.Cell): """CountNonZero net definition""" def __init__(self, axis, keep_dims, dtype): super(CountNonZero, self).__init__() self.axis = axis self.keep_dims = keep_dims self.dtype = dtype def construct(self, input_x): nonzero_num = C.count_nonzero(input_x, self.axis, self.keep_dims, self.dtype) return nonzero_num class Mish(nn.Cell): """Mish net definition""" def __init__(self): super(Mish, self).__init__() self.mish = P.Mish() def construct(self, input_x): out = self.mish(input_x) return out class SeLU(nn.Cell): """Selu net definition""" def __init__(self): super(SeLU, self).__init__() self.selu = P.SeLU() def construct(self, input_x): out = self.selu(input_x) return out class MulNoNan(nn.Cell): """MulNoNan net definition""" def __init__(self): super(MulNoNan, self).__init__() self.mul_no_nan = P.MulNoNan() def construct(self, input_x, input_y): out = self.mul_no_nan(input_x, input_y) return out class ScatterUpdate(nn.Cell): """ScatterUpdate net definition""" def __init__(self, ref_shape, dtype=np.float32, use_locking=False): super(ScatterUpdate, self).__init__() self.scatter_update = P.ScatterUpdate(use_locking) self.ref = Parameter(Tensor(np.ones(ref_shape, dtype)), name="ref") def construct(self, indices, updates): out = self.scatter_update(self.ref, indices, updates) return out class ScatterMax(nn.Cell): """ScatterMax net definition""" def __init__(self, dtype=np.float32, use_locking=False): super(ScatterMax, self).__init__() self.scatter_max = P.ScatterMax(use_locking) self.ref = Parameter(Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], dtype)), name="ref") def construct(self, indices, updates): out = self.scatter_max(self.ref, indices, updates) return out class ScatterMin(nn.Cell): """ScatterMin net definition""" def __init__(self, dtype=np.float32, use_locking=False): super(ScatterMin, self).__init__() self.scatter_min = P.ScatterMin(use_locking) self.ref = Parameter(Tensor(np.array([[-1.0, 2.0, 3.0], [-4.0, 1.0, 6.0]], dtype)), name="ref") def construct(self, indices, updates): out = self.scatter_min(self.ref, indices, updates) return out class ScatterAdd(nn.Cell): """ScatterAdd net definition""" def __init__(self, ref_shape, dtype=np.float32, use_locking=False): super(ScatterAdd, self).__init__() self.scatter_add = P.ScatterAdd(use_locking) self.ref = Parameter(Tensor(np.ones(ref_shape, dtype)), name="ref") def construct(self, indices, updates): out = self.scatter_add(self.ref, indices, updates) return out class ScatterNonAliasingAdd(nn.Cell): """ScatterNonAliasingAdd net definition""" def __init__(self, ref_shape, dtype=np.float32): super(ScatterNonAliasingAdd, self).__init__() self.scatter_no_aliasing_add = P.ScatterNonAliasingAdd() self.ref = Parameter(Tensor(np.ones(ref_shape, dtype)), name="ref") def construct(self, indices, updates): out = self.scatter_no_aliasing_add(self.ref, indices, updates) return out class ScatterNdSub(nn.Cell): """ScatterNdSub net definition""" def __init__(self, ref_shape, dtype=np.float32): super(ScatterNdSub, self).__init__() self.scatter_nd_sub = P.ScatterNdSub() self.ref = Parameter(Tensor(np.ones(ref_shape, dtype)), name="ref") def construct(self, indices, updates): out = self.scatter_nd_sub(self.ref, indices, updates) return out class ScatterNdAdd(nn.Cell): """ScatterNdAdd net definition""" def __init__(self, ref_shape, dtype=np.float32): super(ScatterNdAdd, self).__init__() self.scatter_nd_add = P.ScatterNdAdd() self.ref = Parameter(Tensor(np.ones(ref_shape, dtype)), name="ref") def construct(self, indices, updates): out = self.scatter_nd_add(self.ref, indices, updates) return out class ScatterSub(nn.Cell): """ScatterSub net definition""" def __init__(self, ref_shape, dtype=np.float32, use_locking=False): super(ScatterSub, self).__init__() self.scatter_sub = P.ScatterSub(use_locking) self.ref = Parameter(Tensor(np.ones(ref_shape, dtype)), name="ref") def construct(self, indices, updates): out = self.scatter_sub(self.ref, indices, updates) return out class ScatterMul(nn.Cell): """ScatterMul net definition""" def __init__(self, ref_shape, dtype=np.float32, use_locking=False): super(ScatterMul, self).__init__() self.scatter_mul = P.ScatterMul(use_locking) self.ref = Parameter(Tensor(np.ones(ref_shape, dtype)), name="ref") def construct(self, indices, updates): out = self.scatter_mul(self.ref, indices, updates) return out class ScatterDiv(nn.Cell): """ScatterDiv net definition""" def __init__(self, ref_shape, dtype=np.float32, use_locking=False): super(ScatterDiv, self).__init__() self.scatter_div = P.ScatterDiv(use_locking) self.ref = Parameter(Tensor(np.ones(ref_shape, dtype) * 10), name="ref") def construct(self, indices, updates): out = self.scatter_div(self.ref, indices, updates) return out class Conv3D(nn.Cell): """Conv3D net definition""" def __init__(self, out_channel, kernel_size, mode, pad_mode, pad, stride, dilation, group, data_format): super(Conv3D, self).__init__() self.conv = nps.Conv3D(out_channel=out_channel, kernel_size=kernel_size, mode=mode, pad_mode=pad_mode, pad=pad, stride=stride, dilation=dilation, group=group, data_format=data_format) def construct(self, x, w): out = self.conv(x, w) return out class Conv3DBackpropInput(nn.Cell): """Conv3DBackpropInput net definition""" def __init__(self, input_shape, out_channel, kernel_size, mode, pad_mode, pad, stride, dilation, group, data_format): super(Conv3DBackpropInput, self).__init__() self.conv = nps.Conv3DBackpropInput(out_channel=out_channel, kernel_size=kernel_size, mode=mode, pad_mode=pad_mode, pad=pad, stride=stride, dilation=dilation, group=group, data_format=data_format) self.x_size = input_shape def construct(self, w, doutput): ms_out = self.conv(w, doutput, self.x_size) return ms_out class Conv3DBackpropFilter(nn.Cell): """Conv3DBackpropFilter net definition""" def __init__(self, w_shape, out_channel, kernel_size, mode, pad_mode, pad, stride, dilation, group, data_format): super(Conv3DBackpropFilter, self).__init__() self.conv = G.Conv3DBackpropFilter(out_channel=out_channel, kernel_size=kernel_size, mode=mode, pad_mode=pad_mode, pad=pad, stride=stride, dilation=dilation, group=group, data_format=data_format) self.w_size = w_shape def construct(self, x, doutput): ms_out = self.conv(x, doutput, self.w_size) return ms_out class Conv3DTranspose(nn.Cell): """Conv3DTranspose net definition""" def __init__(self, in_channel, out_channel, kernel_size, mode, pad, stride, dilation, group, data_format): super(Conv3DTranspose, self).__init__() self.conv = nps.Conv3DTranspose(in_channel=in_channel, out_channel=out_channel, kernel_size=kernel_size, mode=mode, pad=pad, stride=stride, dilation=dilation, group=group, data_format=data_format) def construct(self, x, w): ms_out = self.conv(x, w) return ms_out class ApplyFtrlNet(nn.Cell): def __init__(self): super(ApplyFtrlNet, self).__init__() self.apply_ftrl = P.ApplyFtrl() self.lr = 0.001 self.l1 = 0.0 self.l2 = 0.0 self.lr_power = -0.5 self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var") self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum") self.linear = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="linear") def construct(self, grad): out = self.apply_ftrl(self.var, self.accum, self.linear, grad, self.lr, self.l1, self.l2, self.lr_power) return out class SparseApplyFtrlNet(nn.Cell): def __init__(self): super(SparseApplyFtrlNet, self).__init__() self.sparse_apply_ftrl = P.SparseApplyFtrl(lr=0.001, l1=0.0, l2=0.0, lr_power=-0.5) self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var") self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum") self.linear = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="linear") def construct(self, grad, indices): out = self.sparse_apply_ftrl(self.var, self.accum, self.linear, grad, indices) return out class SparseApplyFtrlV2Net(nn.Cell): def __init__(self): super(SparseApplyFtrlV2Net, self).__init__() self.sparse_apply_ftrl_v2 = P.SparseApplyFtrlV2(lr=0.001, l1=0.0, l2=0.0, l2_shrinkage=0.0, lr_power=-0.5) self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var") self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum") self.linear = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="linear") def construct(self, grad, indices): out = self.sparse_apply_ftrl_v2(self.var, self.accum, self.linear, grad, indices) return out class SparseApplyProximalAdagradNet(nn.Cell): def __init__(self): super(SparseApplyProximalAdagradNet, self).__init__() self.sparse_apply_proximal_adagrad = P.SparseApplyProximalAdagrad() self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var") self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum") self.lr = 0.01 self.l1 = 0.0 self.l2 = 0.0 def construct(self, grad, indices): out = self.sparse_apply_proximal_adagrad(self.var, self.accum, self.lr, self.l1, self.l2, grad, indices) return out class ApplyProximalAdagradNet(nn.Cell): def __init__(self): super(ApplyProximalAdagradNet, self).__init__() self.apply_proximal_adagrad = P.ApplyProximalAdagrad() self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var") self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum") self.lr = 0.01 self.l1 = 0.0 self.l2 = 0.0 def construct(self, grad): out = self.apply_proximal_adagrad(self.var, self.accum, self.lr, self.l1, self.l2, grad) return out class ApplyAdaMaxNet(nn.Cell): def __init__(self): super(ApplyAdaMaxNet, self).__init__() self.apply_ada_max = P.ApplyAdaMax() self.beta1_power = 0.9 self.lr = 0.001 self.beta1 = 0.9 self.beta2 = 0.99 self.epsilon = 1e-10 self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var") self.m = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="m") self.v = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="v") def construct(self, grad): out = self.apply_ada_max(self.var, self.m, self.v, self.beta1_power, self.lr, self.beta1, self.beta2, self.epsilon, grad) return out class ApplyAdadeltaNet(nn.Cell): def __init__(self): super(ApplyAdadeltaNet, self).__init__() self.apply_adadelta = P.ApplyAdadelta() self.lr = 0.001 self.rho = 0.0 self.epsilon = 1e-6 self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var") self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum") self.accum_update = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum_update") def construct(self, grad): out = self.apply_adadelta(self.var, self.accum, self.accum_update, self.lr, self.rho, self.epsilon, grad) return out class ApplyAdagradNet(nn.Cell): def __init__(self): super(ApplyAdagradNet, self).__init__() self.apply_adagrad = P.ApplyAdagrad() self.lr = 0.001 self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var") self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum") def construct(self, grad): out = self.apply_adagrad(self.var, self.accum, self.lr, grad) return out class ApplyAdagradV2Net(nn.Cell): def __init__(self): super(ApplyAdagradV2Net, self).__init__() self.apply_adagrad_v2 = P.ApplyAdagradV2(epsilon=1e-6) self.lr = 0.001 self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var") self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum") def construct(self, grad): out = self.apply_adagrad_v2(self.var, self.accum, self.lr, grad) return out class ApplyAddSignNet(nn.Cell): def __init__(self): super(ApplyAddSignNet, self).__init__() self.apply_add_sign = P.ApplyAddSign() self.lr = 0.001 self.alpha = 1.0 self.sign_decay = 0.99 self.beta = 0.99 self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var") self.m = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="m") def construct(self, grad): out = self.apply_add_sign(self.var, self.m, self.lr, self.alpha, self.sign_decay, self.beta, grad) return out class ApplyPowerSignNet(nn.Cell): def __init__(self): super(ApplyPowerSignNet, self).__init__() self.apply_power_sign = P.ApplyPowerSign() self.lr = 0.001 self.logbase = np.e self.sign_decay = 0.99 self.beta = 0.99 self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var") self.m = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="m") def construct(self, grad): out = self.apply_power_sign(self.var, self.m, self.lr, self.logbase, self.sign_decay, self.beta, grad) return out class ApplyGradientDescentNet(nn.Cell): def __init__(self): super(ApplyGradientDescentNet, self).__init__() self.apply_gradient_descent = P.ApplyGradientDescent() self.alpha = 0.001 self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var") def construct(self, delta): out = self.apply_gradient_descent(self.var, self.alpha, delta) return out class ApplyProximalGradientDescentNet(nn.Cell): def __init__(self): super(ApplyProximalGradientDescentNet, self).__init__() self.apply_proximal_gradient_descent = P.ApplyProximalGradientDescent() self.alpha = 0.001 self.l1 = 0.0 self.l2 = 0.0 self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var") def construct(self, delta): out = self.apply_proximal_gradient_descent(self.var, self.alpha, self.l1, self.l2, delta) return out class SparseApplyAdagradNet(nn.Cell): def __init__(self): super(SparseApplyAdagradNet, self).__init__() self.sparse_apply_adagrad = P.SparseApplyAdagrad(lr=0.01) self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var") self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum") def construct(self, grad, indices): out = self.sparse_apply_adagrad(self.var, self.accum, grad, indices) return out class SparseApplyAdagradV2Net(nn.Cell): def __init__(self): super(SparseApplyAdagradV2Net, self).__init__() self.sparse_apply_adagrad_v2 = P.SparseApplyAdagradV2(lr=0.01, epsilon=0.001) self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var") self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum") def construct(self, grad, indices): out = self.sparse_apply_adagrad_v2(self.var, self.accum, grad, indices) return out class ApplyRMSNet(nn.Cell): def __init__(self): super(ApplyRMSNet, self).__init__() self.apply_rms = P.ApplyRMSProp() self.lr = 0.001 self.rho = 0.0 self.momentum = 0.0 self.epsilon = 1e-10 self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var") self.ms = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="ms") self.moment = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="moment") def construct(self, grad): out = self.apply_rms(self.var, self.ms, self.moment, self.lr, grad, self.rho, self.momentum, self.epsilon) return out class InplaceAddNet(nn.Cell): def __init__(self): super(InplaceAddNet, self).__init__() self.inplace_add = P.InplaceAdd(indices=(0, 1)) def construct(self, x, v): out = self.inplace_add(x, v) return out class InplaceSubNet(nn.Cell): def __init__(self): super(InplaceSubNet, self).__init__() self.inplace_sub = P.InplaceSub(indices=(0, 1)) def construct(self, x, v): out = self.inplace_sub(x, v) return out class NormalNet(nn.Cell): def __init__(self, shape=None, seed=0): super(NormalNet, self).__init__() self.shape = shape self.seed = seed def construct(self, mean, stddev): out = C.normal(self.shape, mean, stddev, self.seed) return out class LaplaceNet(nn.Cell): def __init__(self, shape=None, seed=0): super(LaplaceNet, self).__init__() self.shape = shape self.seed = seed def construct(self, mean, lambda_param): out = C.laplace(self.shape, mean, lambda_param, self.seed) return out class GammaNet(nn.Cell): def __init__(self, shape=None, seed=0): super(GammaNet, self).__init__() self.shape = shape self.seed = seed def construct(self, alpha, beta): out = C.gamma(self.shape, alpha, beta, self.seed) return out class PoissonNet(nn.Cell): def __init__(self, shape=None, seed=0): super(PoissonNet, self).__init__() self.shape = shape self.seed = seed def construct(self, mean): out = C.poisson(self.shape, mean, self.seed) return out class UniformNet(nn.Cell): def __init__(self, shape=None, seed=0): super(UniformNet, self).__init__() self.shape = shape self.seed = seed def construct(self, a, b): out = C.uniform(self.shape, a, b, self.seed) return out class CTCGreedyDecoderNet(nn.Cell): def __init__(self): super(CTCGreedyDecoderNet, self).__init__() self.ctc_greedy_decoder = P.CTCGreedyDecoder() self.assert_op = P.Assert(300) def construct(self, inputs, sequence_length): out = self.ctc_greedy_decoder(inputs, sequence_length) self.assert_op(True, (out[0], out[1], out[2], out[3])) return out[2] class StridedSliceNet(nn.Cell): def __init__(self): super(StridedSliceNet, self).__init__() self.begins = (1, 2, 3, 2, 1) self.ends = (5, 6, 7, 8, 9) self.strides = (1, 2, 3, 2, 1) self.strided_slice_0 = P.StridedSlice(begin_mask=3, end_mask=5, ellipsis_mask=4, shrink_axis_mask=2, new_axis_mask=8) self.strided_slice_1 = P.StridedSlice(begin_mask=5, end_mask=2, ellipsis_mask=2, shrink_axis_mask=6, new_axis_mask=10) self.strided_slice_2 = P.StridedSlice(begin_mask=3, end_mask=3, ellipsis_mask=4, shrink_axis_mask=5, new_axis_mask=13) self.strided_slice_3 = P.StridedSlice(begin_mask=0, end_mask=0, ellipsis_mask=4, shrink_axis_mask=12, new_axis_mask=15) self.const_0 = Tensor(np.ones([6, 8, 9, 1, 8], np.float32)) self.const_1 = Tensor(np.ones([5, 7, 8, 1, 8], np.float32)) self.const_2 = Tensor(np.ones([1, 3, 7, 8, 9, 1, 8], np.float32)) self.const_3 = Tensor(np.ones([1, 1, 6, 7, 8, 9, 1, 8], np.float32)) def construct(self, x): out_0 = self.strided_slice_0(x, self.begins, self.ends, self.strides) + self.const_0 out_1 = self.strided_slice_1(x, self.begins, self.ends, self.strides) + self.const_1 out_2 = self.strided_slice_2(x, self.begins, self.ends, self.strides) + self.const_2 out_3 = self.strided_slice_3(x, self.begins, self.ends, self.strides) + self.const_3 return out_0, out_1, out_2, out_3 @pytest.mark.skip(reason='0 in shape is not support') def test_strided_slice_const(): class StridedSLiceConstNet(nn.Cell): """StridedSLiceConstNet net definition""" def __init__(self): super(StridedSLiceConstNet, self).__init__() self.begins = (0, 2, -5, 2, 1) self.ends = (0, 6, 9, 8, 9) self.strides = (1, 2, 1, 2, 1) self.strided_slice = P.StridedSlice(begin_mask=2, end_mask=6, ellipsis_mask=4, shrink_axis_mask=6, new_axis_mask=18) def construct(self, x): out = self.strided_slice(x, self.begins, self.ends, self.strides) return out net = StridedSLiceConstNet() context.set_context(mode=context.GRAPH_MODE) x = Tensor(np.ones([6, 7, 8, 9, 10]), mstype.float32) ret = net(x) assert ret.shape == (0, 1, 7, 8, 9, 3, 1) assert (ret.asnumpy() == np.array([], np.float32).reshape([0, 1, 7, 8, 9, 3, 1])).all() class ParallelConcatNet(nn.Cell): def __init__(self): super(ParallelConcatNet, self).__init__() self.parallel_concat = P.ParallelConcat() def construct(self, x1, x2): return self.parallel_concat((x1, x2)) class BasicLSTMCellNet(nn.Cell): """ BasicLSTMCellNet definition """ def __init__(self): super(BasicLSTMCellNet, self).__init__() self.lstm = P.BasicLSTMCell() def construct(self, x, h, c, w, b): return self.lstm(x, h, c, w, b) class DynamicGRUV2Net(nn.Cell): """ DynamicGRUV2Net definition """ def __init__(self): super(DynamicGRUV2Net, self).__init__() self.dynamic_gru = P.DynamicGRUV2() def construct(self, x, w_i, w_h, b_i, b_h, init_h): return self.dynamic_gru(x, w_i, w_h, b_i, b_h, None, init_h) class EditDistance(nn.Cell): def __init__(self, hypothesis_shape, truth_shape, normalize=True): super(EditDistance, self).__init__() self.edit_distance = P.EditDistance(normalize) self.hypothesis_shape = hypothesis_shape self.truth_shape = truth_shape def construct(self, hypothesis_indices, hypothesis_values, truth_indices, truth_values): return self.edit_distance(hypothesis_indices, hypothesis_values, self.hypothesis_shape, truth_indices, truth_values, self.truth_shape) class ApplyAdagradDANet(nn.Cell): def __init__(self, use_locking=False): super(ApplyAdagradDANet, self).__init__() self.apply_adagrad_d_a = P.ApplyAdagradDA(use_locking) self.var = Parameter(Tensor(np.array([[0.6, 0.4], [0.1, 0.5]]).astype(np.float32)), name="var") self.gradient_accumulator = Parameter(Tensor(np.array([[0.1, 0.3], [0.1, 0.5]]).astype(np.float32)), name="gradient_accumulator") self.gradient_squared_accumulator = Parameter(Tensor(np.array([[0.2, 0.1], [0.1, 0.2]]).astype(np.float32)), name="gradient_squared_accumulator") def construct(self, grad, lr, l1, l2, global_step): out = self.apply_adagrad_d_a(self.var, self.gradient_accumulator, self.gradient_squared_accumulator, grad, lr, l1, l2, global_step) return out class SparseApplyRMSPropNet(nn.Cell): def __init__(self, rho, momentum, epsilon, use_locking=False): super(SparseApplyRMSPropNet, self).__init__() self.sparse_apply_r_m_s_prop = P.SparseApplyRMSProp(rho, momentum, epsilon, use_locking) self.var = Parameter(Tensor(np.array([[0.6, 0.3], [0.1, 0.5]]).astype(np.float32)), name="var") self.ms = Parameter(Tensor(np.array([[0.2, 0.4], [0.1, 0.3]]).astype(np.float32)), name="ms") self.mom = Parameter(Tensor(np.array([[0.3, 0.1], [0.3, 0.6]]).astype(np.float32)), name="mom") def construct(self, lr, grad, indices): out = self.sparse_apply_r_m_s_prop(self.var, self.ms, self.mom, lr, grad, indices) return out test_case_math_ops = [ ('BitwiseAnd', { 'block': P.BitwiseAnd(), 'desc_inputs': [Tensor(np.array([0, 0, 1, -1, 1, 1, 1]), mstype.int16), Tensor(np.array([0, 1, 1, -1, -1, 2, 3]), mstype.int16)], 'skip': ['backward']}), ('BitwiseAnd_1', { 'block': P.BitwiseAnd(), 'desc_inputs': [Tensor(np.array([[1, 2, 3], [-1, -2, -3]]), mstype.int16), Tensor(np.array([1, 1, 1]), mstype.int16)], 'skip': ['backward']}), ('BitwiseOr', { 'block': P.BitwiseOr(), 'desc_inputs': [Tensor(np.array([0, 0, 1, -1, 1, 1, 1]), mstype.int16), Tensor(np.array([0, 1, 1, -1, -1, 2, 3]), mstype.int16)], 'skip': ['backward']}), ('BitwiseOr_1', { 'block': P.BitwiseOr(), 'desc_inputs': [Tensor(np.array([[1, 2, 3], [-1, -2, -3]]), mstype.int16), Tensor(np.array([1, 1, 1]), mstype.int16)], 'skip': ['backward']}), ('BitwiseXor', { 'block': P.BitwiseXor(), 'desc_inputs': [Tensor(np.array([0, 0, 1, -1, 1, 1, 1]), mstype.int16), Tensor(np.array([0, 1, 1, -1, -1, 2, 3]), mstype.int16)], 'skip': ['backward']}), ('BitwiseXor_1', { 'block': P.BitwiseXor(), 'desc_inputs': [Tensor(np.array([[1, 2, 3], [-1, -2, -3]]), mstype.int16), Tensor(np.array([1, 1, 1]), mstype.int16)], 'skip': ['backward']}), ('Neg', { 'block': P.Neg(), 'desc_inputs': [[1, 3, 4, 4]], 'desc_bprop': [[1, 3, 4, 4]]}), ('Sub', { 'block': P.Sub(), 'desc_inputs': [[3, 5], [2, 3, 3, 5]], 'desc_bprop': [[2, 3, 3, 5]]}), ('Add', { 'block': P.Add(), 'desc_inputs': [[3, 5], [2, 3, 3, 5]], 'desc_bprop': [[2, 3, 3, 5]]}), ('Mul0', { 'block': P.Mul(), 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]], 'desc_bprop': [[2, 3, 3, 5]]}), ('Mul1', { 'block': P.Mul(), 'desc_inputs': [[2, 3, 1, 1], [2, 3, 3, 5]], 'desc_bprop': [[2, 3, 3, 5]]}), ('Mul2', { 'block': P.Mul(), 'desc_inputs': [[2, 3, 3, 5], [2, 3, 1, 1]], 'desc_bprop': [[2, 3, 3, 5]], 'skip': ['backward']}), ('Mul3', { 'block': P.Mul(), 'desc_inputs': [[3, 5], [2, 3, 3, 5]], 'desc_bprop': [[2, 3, 3, 5]], 'skip': ['backward']}), ('Mul4', { 'block': P.Mul(), 'desc_inputs': [[2, 3, 3, 5], [3, 5]], 'desc_bprop': [[2, 3, 3, 5]], 'skip': ['backward']}), ('Add0', { 'block': P.Add(), 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]], 'desc_bprop': [[2, 3, 3, 5]]}), ('Add1', { 'block': P.Add(), 'desc_inputs': [[3, 5], [2, 3, 3, 5]], 'desc_bprop': [[2, 3, 3, 5]], 'skip': ['backward']}), ('Add2', { 'block': P.Add(), 'desc_inputs': [[2, 3, 3, 5], [3, 5]], 'desc_bprop': [[2, 3, 3, 5]], 'skip': ['backward']}), ('Add3', { 'block': P.Add(), 'desc_inputs': [[2, 3, 1, 1], [2, 3, 3, 5]], 'desc_bprop': [[2, 3, 3, 5]], 'skip': ['backward']}), ('Add4', { 'block': P.Add(), 'desc_inputs': [[2, 3, 3, 5], [2, 3, 1, 1]], 'desc_bprop': [[2, 3, 3, 5]], 'skip': ['backward']}), ('Minimum', { 'block': P.Minimum(), 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]], 'desc_bprop': [[2, 3, 3, 5]]}), ('Pow_0', { 'block': P.Pow(), 'desc_const': [2.0], 'desc_inputs': [[2, 3, 3, 5]], 'desc_bprop': [[2, 3, 3, 5]]}), ('Pow_1', { 'block': P.Pow(), 'desc_inputs': [[3, 5], [2, 3, 3, 5]], 'desc_bprop': [[2, 3, 3, 5]]}), ('Exp', { 'block': P.Exp(), 'desc_inputs': [[2, 3]], 'desc_bprop': [[2, 3]]}), ('Expm1', { 'block': P.Expm1(), 'desc_inputs': [[2, 3]], 'desc_bprop': [[2, 3]]}), ('Erf', { 'block': P.Erf(), 'desc_inputs': [Tensor(np.array([-2, -1, 0, 1, 2]).astype(np.float16))], 'desc_bprop': [Tensor(np.array([-2, -1, 0, 1, 2]).astype(np.float16))]}), ('Floor', { 'block': P.Floor(), 'desc_inputs': [[2, 512, 56, 56]], 'desc_bprop': [[2, 512, 56, 56]], 'skip': ['backward']}), ('Ceil', { 'block': P.Ceil(), 'desc_inputs': [[2, 512, 56, 56]], 'desc_bprop': [[2, 512, 56, 56]], 'skip': ['backward']}), ('InplaceAdd', { 'block': InplaceAddNet(), 'desc_inputs': [Tensor(np.array([[1, 2], [3, 4], [5, 6]]).astype(np.float32)), Tensor(np.array([[0.5, 1], [1, 1.5]]).astype(np.float32))], 'skip': ['backward']}), ('InplaceSub', { 'block': InplaceSubNet(), 'desc_inputs': [Tensor(np.array([[1, 2], [3, 4], [5, 6]]).astype(np.float32)), Tensor(np.array([[0.5, 1], [1, 1.5]]).astype(np.float32))], 'skip': ['backward']}), ('ACos', { 'block': P.ACos(), 'desc_inputs': [Tensor(np.array([2., 3.]).astype(np.float32))], 'desc_bprop': [Tensor(np.array([2., 3.]).astype(np.float32))]}), ('ACosGrad', { 'block': G.ACosGrad(), 'desc_inputs': [[2, 3], [2, 3]], 'skip': ['backward']}), ('Acosh', { 'block': P.Acosh(), 'desc_inputs': [Tensor(np.array([2., 3.]).astype(np.float32))], 'desc_bprop': [Tensor(np.array([2., 3.]).astype(np.float32))]}), ('AcoshGrad', { 'block': G.AcoshGrad(), 'desc_inputs': [[2, 3], [2, 3]], 'skip': ['backward']}), ('Sin', { 'block': P.Sin(), 'desc_inputs': [[2, 3]], 'desc_bprop': [[2, 3]]}), ('Asin', { 'block': P.Asin(), 'desc_inputs': [[2, 3]], 'desc_bprop': [[2, 3]]}), ('Asinh', { 'block': P.Asinh(), 'desc_inputs': [[3, 4, 5]], 'desc_bprop': [[3, 4, 5]]}), ('Tan', { 'block': P.Tan(), 'desc_inputs': [[2, 3]], 'desc_bprop': [[2, 3]]}), ('Reciprocal', { 'block': P.Reciprocal(), 'desc_inputs': [[2, 3, 3, 5]], 'desc_bprop': [[2, 3, 3, 5]]}), ('Minimum_0', { 'block': P.Minimum(), 'desc_inputs': [[2, 3, 3, 5], [3, 3, 5]], 'desc_bprop': [[2, 3, 3, 5]]}), ('Maximum', { 'block': P.Maximum(), 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]], 'desc_bprop': [[2, 3, 3, 5]]}), ('Maximum_0', { 'block': P.Maximum(), 'desc_inputs': [[3, 5], [2, 3, 3, 5]], 'desc_bprop': [[2, 3, 3, 5]]}), ('MaximumGrad', { 'block': G.MaximumGrad(), 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5], [2, 3, 3, 5]], 'skip': ['backward']}), ('MinimumGrad', { 'block': G.MinimumGrad(), 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5], [2, 3, 3, 5]], 'skip': ['backward']}), ('StridedSlice_00', { 'block': P.StridedSlice(shrink_axis_mask=0), 'desc_const': [(0, 1, 2, 1), (2, 3, 3, 4), (1, 1, 1, 2)], 'desc_inputs': [[2, 3, 3, 5]], 'desc_bprop': [[2, 2, 1, 3]], 'skip': ['backward']}), ('Slice_1', { 'block': P.Slice(), 'desc_const': [(0, 1, 2, 1), (1, 1, 1, 2)], 'desc_inputs': [[2, 3, 3, 5]], 'desc_bprop': [[1, 1, 1, 2]]}), ('StridedSliceGrad', { 'block': G.StridedSliceGrad(), 'desc_const': [(64, 1, 1024), (0, 1, 0), (64, 2, 1024), (1, 1, 1)], 'desc_inputs': [[64, 128, 1024]], 'skip': ['backward']}), ('Normal', { 'block': NormalNet((3, 2, 4), 0), 'desc_inputs': [Tensor(0.0, mstype.float32), Tensor(1.0, mstype.float32)], 'skip': ['backward']}), ('Laplace', { 'block': LaplaceNet((3, 2, 4), 0), 'desc_inputs': [Tensor(1.0, mstype.float32), Tensor(1.0, mstype.float32)], 'skip': ['backward']}), ('Gamma', { 'block': GammaNet((3, 2, 4), 0), 'desc_inputs': [Tensor(1.0, mstype.float32), Tensor(1.0, mstype.float32)], 'skip': ['backward']}), ('Poisson', { 'block': PoissonNet((3, 2, 4), 0), 'desc_inputs': [Tensor(2.0, mstype.float32)], 'skip': ['backward']}), ('Uniform', { 'block': UniformNet((3, 2, 4), 0), 'desc_inputs': [Tensor(0.0, mstype.float32), Tensor(1.0, mstype.float32)], 'skip': ['backward']}), ('RandomChoiceWithMask', { 'block': P.RandomChoiceWithMask(256), 'desc_inputs': [Tensor(np.random.rand(24000, 4).astype(np.bool_))], 'desc_bprop': [[256, 4], [256, 4]], 'skip': ['backward']}), ('Lerp', { 'block': P.Lerp(), 'desc_inputs': [Tensor(np.array([1., 2., 3., 4.]).astype(np.float32)), Tensor(np.array([10., 10., 10., 10.]).astype(np.float32)), Tensor(0.5, mstype.float32)], 'desc_bprop': [Tensor(np.array([1., 2., 3., 4.]).astype(np.float32))]}), ('LessEqual', { 'block': P.LessEqual(), 'desc_inputs': [Tensor(np.random.rand(4).astype(np.float16)), Tensor(np.random.rand(4).astype(np.float16))], 'skip': ['backward']}), ('Less', { 'block': P.Less(), 'desc_inputs': [[2, 1, 4, 5], [2, 1, 4, 5]], 'desc_bprop': [Tensor(np.zeros((2, 1, 4, 5), np.bool_))], 'skip': ['backward']}), ('RealDiv_0', { 'block': P.RealDiv(), 'desc_const': [Tensor(2048.0), Tensor(0.0)], 'desc_inputs': [], 'skip': ['backward']}), ('RealDiv', { 'block': P.RealDiv(), 'desc_inputs': [[4], Tensor(np.ones(4).astype(np.float32))], 'desc_bprop': [[4]]}), ('RealDiv_1', { 'block': P.RealDiv(), 'desc_inputs': [[512, 1024], [512, 1024]], 'desc_bprop': [[512, 1024]]}), ('FloorDiv', { 'block': P.FloorDiv(), 'desc_inputs': [Tensor(np.random.rand(4).astype(np.float16)), Tensor(np.random.rand(4).astype(np.float16))], 'skip': ['backward']}), ('FloorMod', { 'block': P.FloorMod(), 'desc_inputs': [[3, 4, 5], [2, 3, 4, 5]], 'desc_bprop': [[2, 3, 4, 5]]}), ('TruncateDiv', { 'block': P.TruncateDiv(), 'desc_inputs': [[3, 4, 5], [2, 3, 4, 5]], 'desc_bprop': [[2, 3, 4, 5]]}), ('TruncateMod', { 'block': P.TruncateMod(), 'desc_inputs': [[3, 4, 5], [2, 3, 4, 5]], 'desc_bprop': [[2, 3, 4, 5]]}), ('identity', { 'block': ops.functional.identity, 'desc_inputs': [[2, 2]], 'skip': ['backward']}), ('MatMul_1', { 'block': P.MatMul(transpose_a=False, transpose_b=False), 'desc_inputs': [[1024, 160], [160, 1024]], 'desc_bprop': [[1024, 1024]]}), ('MatMul_2', { 'block': P.MatMul(transpose_a=True, transpose_b=True), 'desc_inputs': [[160, 1024], [1024, 160]], 'desc_bprop': [[1024, 1024]]}), ('Sub', { 'block': P.Sub(), 'desc_inputs': [[3], [3]], 'desc_bprop': [[3]]}), ('TruncatedNormal', { 'block': P.TruncatedNormal(), 'desc_const': [(1, 2, 3)], 'desc_inputs': [], 'skip': ['backward'], 'add_fake_input': True}), ('Select', { 'block': P.Select(), 'desc_inputs': [Tensor(np.array([[True, False, False], [False, True, True]])), [2, 3], [2, 3]], 'desc_bprop': [[2, 3]]}), ('ClipByNorm_1', { 'block': ClipByNorm(), 'desc_inputs': [Tensor(np.random.rand(3, 16, 5, 4).astype(np.float32)), Tensor(np.array([0.01]).astype(np.float32))], 'skip': ['backward']}), ('ClipByNorm_2', { 'block': ClipByNorm(axis=0), 'desc_inputs': [Tensor(np.random.rand(3, 16, 5, 4).astype(np.float32)), Tensor(np.array([0.01]).astype(np.float32))], 'skip': ['backward']}), ('ClipByGlobalNorm', { 'block': ClipByGlobalNorm(x=Tensor(np.random.rand(3, 16, 5, 4).astype(np.float32)), clip_norm=1.0, use_norm=None), 'desc_inputs': [], 'skip': ['backward']}), ('Cdist', { 'block': P.Cdist(p=2.0), 'desc_inputs': [Tensor(np.array([[[1.0, 1.0], [2.0, 2.0]]]).astype(np.float32)), Tensor(np.array([[[3.0, 3.0], [3.0, 3.0]]]).astype(np.float32))], 'desc_bprop': [Tensor(np.array([[[1.0, 1.0], [2.0, 2.0]]]).astype(np.float32))]}), ('Embedding_1', { 'block': Embedding(vocab_size=10, embedding_size=3), 'desc_inputs': [Tensor(np.array([0, 2, 2, 7]).astype(np.int32))], 'skip': ['backward']}), ('Embedding_2', { 'block': Embedding(vocab_size=10, embedding_size=3, padding_idx=2), 'desc_inputs': [Tensor(np.array([0, 2, 2, 7]).astype(np.int32))], 'skip': ['backward']}), ('EmbeddingLookup_1', { 'block': EmbeddingLookup(vocab_size=10, embedding_size=3), 'desc_inputs': [Tensor(np.array([0, 2, 2, 7]).astype(np.int32))], 'skip': ['backward']}), ('EmbeddingLookup_2', { 'block': EmbeddingLookup(vocab_size=10, embedding_size=3, max_norm=0.01), 'desc_inputs': [Tensor(np.array([0, 2, 2, 7]).astype(np.int32))], 'skip': ['backward']}), ('Moments', { 'block': Moments(axis=(), keep_dims=False), 'desc_inputs': [Tensor(np.random.rand(3, 16, 5, 4).astype(np.float32))], 'skip': ['backward']}), ('NLLLoss', { 'block': NLLLoss(reduction="mean"), 'desc_inputs': [Tensor(np.random.rand(3, 16), mstype.float32), Tensor(np.random.rand(3), mstype.int32), Tensor(np.random.rand(16), mstype.float32)], 'desc_bprop': [(Tensor(np.random.rand(1), mstype.float32), Tensor(np.random.rand(1), mstype.float32))]}), ('BatchNorm3d', { 'block': BatchNorm3d(num_features=3), 'desc_inputs': [Tensor(np.random.rand(3, 3, 3, 5, 4).astype(np.float32))], 'skip': ['backward']}), ('Conv3D', { 'block': Conv3D(out_channel=32, kernel_size=(4, 3, 3), mode=1, pad_mode='valid', pad=0, stride=1, dilation=1, group=1, data_format="NCDHW"), 'desc_inputs': [Tensor(np.random.random((16, 3, 10, 32, 32)).astype(np.float16)), Tensor(np.random.random((32, 3, 4, 3, 3)).astype(np.float16))], 'skip': ['backward']}), ('Conv3DBackpropInput', { 'block': Conv3DBackpropInput(input_shape=(16, 32, 13, 37, 33), out_channel=32, kernel_size=(4, 6, 2), mode=1, pad_mode='valid', pad=0, stride=1, dilation=1, group=1, data_format="NCDHW"), 'desc_inputs': [Tensor(np.random.random((32, 32, 4, 6, 2)).astype(np.float16)), Tensor(np.random.random((16, 32, 10, 32, 32)).astype(np.float16))], 'skip': ['backward']}), ('Conv3DBackpropFilter', { 'block': Conv3DBackpropFilter(w_shape=(32, 32, 4, 6, 2), out_channel=32, kernel_size=(4, 6, 2), mode=1, pad_mode='valid', pad=0, stride=1, dilation=1, group=1, data_format="NCDHW"), 'desc_inputs': [Tensor(np.random.random((16, 32, 13, 37, 33)).astype(np.float16)), Tensor(np.random.random((16, 32, 10, 32, 32)).astype(np.float16))], 'skip': ['backward']}), ('Conv3DTranspose', { 'block': Conv3DTranspose(in_channel=32, out_channel=3, kernel_size=(4, 6, 2), mode=1, pad=0, stride=1, dilation=1, group=1, data_format="NCDHW"), 'desc_inputs': [Tensor(np.random.random((32, 3, 10, 32, 32)).astype(np.float16)), Tensor(np.random.random((3, 3, 4, 6, 2)).astype(np.float16))], 'skip': ['backward']}), ('CountNonZero', { 'block': CountNonZero(axis=(), keep_dims=False, dtype=mstype.int32), 'desc_inputs': [Tensor(np.random.rand(3, 16, 5, 4).astype(np.float32))], 'skip': ['backward']}), ('FakeQuantWithMinMaxVars', { 'block': Q.FakeQuantWithMinMaxVars(num_bits=8, narrow_range=False), 'desc_inputs': [Tensor(np.random.rand(3, 16, 5, 5), mstype.float32), Tensor(np.array([-6]), mstype.float32), Tensor(np.array([6]), mstype.float32)], 'desc_bprop': [Tensor(np.random.rand(3, 16, 5, 5), mstype.float32)]}), ('FakeQuantWithMinMaxVarsPerChannel', { 'block': Q.FakeQuantWithMinMaxVarsPerChannel(num_bits=8, narrow_range=False), 'desc_inputs': [Tensor(np.random.rand(3, 16, 5, 4), mstype.float32), Tensor(np.array([-6, -1, -2, -3]), mstype.float32), Tensor(np.array([6, 1, 2, 3]), mstype.float32)], 'desc_bprop': [Tensor(np.random.rand(3, 16, 5, 4), mstype.float32)]}), ('Mish', { 'block': Mish(), 'desc_inputs': [Tensor(np.random.rand(3, 6, 16, 16), mstype.float32)], 'desc_bprop': [Tensor(np.random.rand(3, 6, 16, 16), mstype.float32)]}), ('SeLU', { 'block': SeLU(), 'desc_inputs': [Tensor(np.random.rand(3, 6, 16, 16), mstype.float32)], 'desc_bprop': [Tensor(np.random.rand(3, 6, 16, 16), mstype.float32)]}), ('MulNoNan', { 'block': MulNoNan(), 'desc_inputs': [Tensor(np.random.rand(3, 6, 16, 16), mstype.float32), Tensor(np.random.rand(3, 6, 16, 16), mstype.float32)], 'desc_bprop': [Tensor(np.random.rand(3, 6, 16, 16), mstype.float32)]}), ('Rank', { 'block': P.Rank(), 'desc_inputs': [[2, 3]], 'skip': ['backward']}), ('InvertPermutation', { 'block': P.InvertPermutation(), 'desc_const': [(0, 3, 1, 2)], 'desc_inputs': [], 'skip': ['backward']}), ('Xdivy', { 'block': P.Xdivy(), 'desc_inputs': [[4, 5], [2, 3, 4, 5]], 'desc_bprop': [[2, 3, 4, 5]]}), ('Xlogy', { 'block': P.Xlogy(), 'desc_inputs': [[4, 5], [2, 3, 4, 5]], 'desc_bprop': [[2, 3, 4, 5]]}), ('SquaredDifference', { 'block': P.SquaredDifference(), 'desc_inputs': [[4, 5], [2, 3, 4, 5]], 'desc_bprop': [[2, 3, 4, 5]]}), ('Square', { 'block': P.Square(), 'desc_inputs': [[4]], 'desc_bprop': [[4]]}), ('Rsqrt', { 'block': P.Rsqrt(), 'desc_inputs': [[4]], 'desc_bprop': [[4]]}), ('Sqrt', { 'block': P.Sqrt(), 'desc_inputs': [[4]], 'desc_bprop': [[4]]}), ('RealDiv', { 'block': P.RealDiv(), 'desc_inputs': [[4, 5], [2, 3, 4, 5]], 'desc_bprop': [[2, 3, 4, 5]]}), ('IsFinite', { 'block': P.IsFinite(), 'desc_inputs': [Tensor(np.random.random((3, 4, 5)).astype(np.float32))], 'desc_bprop': [Tensor(np.random.random((3, 4, 5)).astype(np.bool))]}), ('Div', { 'block': P.Div(), 'desc_inputs': [[4, 5], [2, 3, 4, 5]], 'desc_bprop': [[2, 3, 4, 5]]}), ('Equal', { 'block': P.Equal(), 'desc_inputs': [[3, 4, 5], [4, 5]], 'desc_bprop': [Tensor(np.zeros((3, 4, 5), np.bool_))]}), ('NotEqual', { 'block': P.NotEqual(), 'desc_inputs': [[4, 1], [2, 3, 4, 5]], 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}), ('NotEqual_0', { 'block': P.NotEqual(), 'desc_inputs': [Tensor(np.array(1).astype(np.int32)), [2, 3, 4, 5]], 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))], 'skip': ['backward']}), ('ApproximateEqual', { 'block': P.ApproximateEqual(), 'desc_inputs': [[3, 4, 5], [3, 4, 5]], 'desc_bprop': [Tensor(np.zeros((3, 4, 5), np.bool_))]}), ('Greater', { 'block': P.Greater(), 'desc_inputs': [[2, 3, 4, 1], [4, 5]], 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}), ('GreaterEqual', { 'block': P.GreaterEqual(), 'desc_inputs': [[2, 3, 4, 1], [4, 5]], 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}), ('LogicalNot', { 'block': P.LogicalNot(), 'desc_inputs': [Tensor(np.zeros((3, 4, 5), np.bool_))], 'desc_bprop': [Tensor(np.ones((3, 4, 5), np.bool_))]}), ('LogicalAnd', { 'block': P.LogicalAnd(), 'desc_inputs': [Tensor(np.zeros((2, 3, 4), np.bool_)), Tensor(np.ones((1), np.bool_))], 'desc_bprop': [Tensor(np.zeros((2, 3, 4), np.bool_))]}), ('LogicalOr', { 'block': P.LogicalOr(), 'desc_inputs': [Tensor(np.zeros((3, 4, 5), np.bool_)), Tensor(np.ones((3, 1, 1), np.bool_))], 'desc_bprop': [Tensor(np.zeros((3, 4, 5), np.bool_))]}), ('NpuAllocFloatStatus', { 'block': P.NPUAllocFloatStatus(), 'desc_inputs': [], 'add_fack_input': True, 'fack_input_type': np.float32, 'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))], 'skip': ['backward']}), ('NpuGetFloatStatus', { 'block': P.NPUGetFloatStatus(), 'desc_inputs': [Tensor(np.zeros([8]).astype(np.float32))], 'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))], 'skip': ['backward']}), ('NpuClearFloatStatus', { 'block': P.NPUClearFloatStatus(), 'desc_inputs': [Tensor(np.zeros([8]).astype(np.float32))], 'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))], 'skip': ['backward']}), ('CheckValid', { 'block': P.CheckValid(), 'desc_inputs': [[20000, 4], [3]], 'desc_bprop': [[20000]], 'skip': ['backward']}), ('NMSWithMask', { 'block': P.NMSWithMask(0.5), 'desc_inputs': [[128, 5]], 'desc_bprop': [[128, 5], [128], [128]], 'skip': ['backward']}), ('Abs', { 'block': P.Abs(), 'desc_inputs': [[4]], 'desc_bprop': [[4]]}), ('CumSum', { 'block': CumSumNet(), 'desc_inputs': [Tensor(np.array([[3, 4, 6, 10], [1, 6, 7, 9], [4, 3, 8, 7], [1, 3, 7, 9]]).astype(np.float32))], 'desc_bprop': [Tensor(np.array([[3, 4, 6, 10], [1, 6, 7, 9], [4, 3, 8, 7], [1, 3, 7, 9]]).astype(np.float32))]}), ('ReduceSum_3', { 'block': P.ReduceSum(), 'desc_const': [0], 'desc_inputs': [[3, 2]], 'desc_bprop': [[2]]}), ('ReduceSum_4', { 'block': P.ReduceSum(keep_dims=True), 'desc_const': [0], 'desc_inputs': [[3, 2]], 'desc_bprop': [[1, 2]]}), ('ReduceSum_5', { 'block': P.ReduceSum(keep_dims=True), 'desc_inputs': [[2, 3, 4]], 'desc_bprop': [[1, 1, 1]]}), ('ReduceSum_6', { 'block': P.ReduceSum(), 'desc_inputs': [[2, 3, 4]], 'desc_bprop': [[1]]}), ('Sum_0', { 'block': P.ReduceSum(), 'desc_const': [(1,)], 'desc_inputs': [[3, 2]], 'desc_bprop': [[3]]}), ('Sum_1', { 'block': P.ReduceSum(keep_dims=True), 'desc_const': [(1,)], 'desc_inputs': [[3, 2]], 'desc_bprop': [[3, 1]]}), ('Sum_2', { 'block': P.ReduceSum(), 'desc_const': [(0, 1)], 'desc_inputs': [[3, 2]], 'desc_bprop': [[1]]}), ('Sum_3', { 'block': P.ReduceSum(), 'desc_const': [0], 'desc_inputs': [[3, 2]], 'desc_bprop': [[2]]}), ('Sum_4', { 'block': P.ReduceSum(keep_dims=True), 'desc_const': [0], 'desc_inputs': [[3, 2]], 'desc_bprop': [[1, 2]]}), ('Sum_5', { 'block': P.ReduceSum(keep_dims=True), 'desc_const': [()], 'desc_inputs': [[2, 3, 4]], 'desc_bprop': [[1, 1, 1]]}), ('Sum_6', { 'block': P.ReduceSum(), 'desc_const': [()], 'desc_inputs': [[2, 3, 4]], 'desc_bprop': [[1]]}), ('Sign', { 'block': P.Sign(), 'desc_inputs': [[3]], 'desc_bprop': [[3]]}), ('Round', { 'block': P.Round(), 'desc_inputs': [[3]], 'desc_bprop': [[3]]}), ('Atan2', { 'block': P.Atan2(), 'desc_inputs': [Tensor(np.array([0, 1]).astype(np.float32)), Tensor(np.array([1, 1]).astype(np.float32))], 'desc_bprop': [[2]]}), ('SquareSumAll', { 'block': P.SquareSumAll(), 'desc_inputs': [Tensor(np.array([0, 1, 4, 5]).astype(np.float32)), Tensor(np.array([1, 1, 3, 7]).astype(np.float32))], 'desc_bprop': [Tensor(np.array(0.1).astype(np.float32)), Tensor(np.array(0.1).astype(np.float32))]}), ('Cos', { 'block': P.Cos(), 'desc_inputs': [[2, 3]], 'desc_bprop': [[2, 3]]}), ('ReduceAll', { 'block': P.ReduceAll(), 'desc_const': [1], 'desc_inputs': [Tensor(np.array([[True, False], [True, True]]))], 'desc_bprop': []}), ('ReduceAny', { 'block': P.ReduceAny(), 'desc_const': [1], 'desc_inputs': [Tensor(np.array([[True, False], [True, True]]))], 'desc_bprop': []}), ('BesselI0e', { 'block': P.BesselI0e(), 'desc_inputs': [[2, 3]], 'desc_bprop': [[2, 3]]}), ('BesselI1e', { 'block': P.BesselI1e(), 'desc_inputs': [[2, 3]], 'desc_bprop': [[2, 3]]}), ('Atan', { 'block': P.Atan(), 'desc_inputs': [[2, 3]], 'desc_bprop': [[2, 3]]}), ('AtanGrad', { 'block': G.AtanGrad(), 'desc_inputs': [[2, 3], [2, 3]], 'skip': ['backward']}), ('Atanh', { 'block': P.Atanh(), 'desc_inputs': [[2, 3]], 'desc_bprop': [[2, 3]]}), ('Cosh', { 'block': P.Cosh(), 'desc_inputs': [[3, 4, 5]], 'desc_bprop': [[3, 4, 5]]}), ('Sinh', { 'block': P.Sinh(), 'desc_inputs': [[3, 4, 5]], 'desc_bprop': [[3, 4, 5]]}), ('Inv', { 'block': P.Inv(), 'desc_inputs': [[21, 9, 12, 5]], 'desc_bprop': [[21, 9, 12, 5]]}), ('Invert', { 'block': P.Invert(), 'desc_inputs': [Tensor(np.array([[24, 4, 13, 9], [1, 5, 10, 8]]).astype(np.int16))], 'desc_bprop': [], 'skip': ['backward']}), ('HistogramFixedWidth', { 'block': P.HistogramFixedWidth(5), 'desc_inputs': [Tensor([-1.0, 0.0, 1.5, 2.0, 5.0, 15], mstype.float16), Tensor([0.0, 5.0], mstype.float16)], 'desc_bprop': [], 'skip': ['backward']}), ('Mod', { 'block': P.Mod(), 'desc_inputs': [[3, 4, 5], [2, 3, 4, 5]], 'desc_bprop': [[2, 3, 4, 5]]}), ('IFMR', { 'block': Q.IFMR(min_percentile=0.2, max_percentile=0.9, search_range=(1.0, 2.0), search_step=1.0, with_offset=False), 'desc_inputs': [[3, 4, 5], Tensor([0.1], mstype.float32), Tensor([0.9], mstype.float32), Tensor(np.random.rand(4).astype(np.int32))], 'desc_bprop': [], 'skip': ['backward']}), ('Erfinv', { 'block': P.Erfinv(), 'desc_inputs': [Tensor(np.array([0.1, 0.1, 0.1]).astype(np.float16))], 'desc_bprop': [Tensor(np.array([1, 1, 1]).astype(np.float16))]}), ('IndexAdd', { 'block': IndexAdd(1), 'desc_inputs': (Tensor(np.array([0, 1, 2]).astype(np.int32)), Tensor(np.array([[0.5, 1.0, 1.5], [1.0, 1.5, 2.0], [2.0, 2.5, 3.0]]).astype(np.float32))), 'desc_bprop': [Tensor(np.array([[1, 1, 1], [1, 1, 1], [1, 1, 1]]).astype(np.float32))]}), ] test_case_nn_ops = [ ('BiasAdd', { 'block': P.BiasAdd(), 'desc_inputs': [[1, 3, 3, 3], [3]], 'desc_bprop': [[1, 3, 3, 3]]}), ('BiasAddGrad', { 'block': G.BiasAddGrad(), 'desc_inputs': [[1, 3, 3, 3]], 'skip': ['backward']}), ('GeLU', { 'block': P.GeLU(), 'desc_inputs': [[1, 3, 4, 4]], 'desc_bprop': [[1, 3, 4, 4]]}), ('GeLUGrad', { 'block': G.GeLUGrad(), 'desc_inputs': [[2, 2], [2, 2], [2, 2]], 'desc_bprop': [[2, 2]], 'skip': ['backward']}), ('Tanh', { 'block': P.Tanh(), 'desc_inputs': [[1, 3, 4, 4]], 'desc_bprop': [[1, 3, 4, 4]]}), ('TanhGrad', { 'block': G.TanhGrad(), 'desc_inputs': [[1, 3, 4, 4], [1, 3, 4, 4]], 'desc_bprop': [[1, 3, 4, 4]], 'skip': ['backward']}), ('ReLU', { 'block': P.ReLU(), 'desc_inputs': [[1, 3, 4, 4]], 'desc_bprop': [[1, 3, 4, 4]]}), ('ReLU6', { 'block': P.ReLU6(), 'desc_inputs': [[1, 3, 4, 4]], 'desc_bprop': [[1, 3, 4, 4]]}), ('ReLUV2', { 'block': P.ReLUV2(), 'desc_inputs': [[1, 3, 4, 4]], 'desc_bprop': [[1, 3, 4, 4], ([1, 1, 4, 4, 2], {'dtype': np.uint8})]}), ('ReLUGrad', { 'block': G.ReluGrad(), 'desc_inputs': [[1, 3, 4, 4], [1, 3, 4, 4]], 'skip': ['backward']}), ('Softplus', { 'block': P.Softplus(), 'desc_inputs': [[1, 3, 4, 4]], 'desc_bprop': [[1, 3, 4, 4]]}), ('SoftplusGrad', { 'block': G.SoftplusGrad(), 'desc_inputs': [[1, 3, 4, 4], [1, 3, 4, 4]], 'skip': ['backward']}), ('Elu', { 'block': P.Elu(), 'desc_inputs': [[2, 3, 4]], 'desc_bprop': [[2, 3, 4]]}), ('EluGrad', { 'block': G.EluGrad(), 'desc_inputs': [[2, 3, 4], [2, 3, 4]], 'desc_bprop': [[2, 3, 4]], 'skip': ['backward']}), ('Sigmoid', { 'block': P.Sigmoid(), 'desc_inputs': [[1, 3, 4, 4]], 'desc_bprop': [[1, 3, 4, 4]]}), ('MaxPool', { 'block': P.MaxPool(kernel_size=(2, 2), strides=(2, 2), pad_mode="VALID"), 'desc_inputs': [[100, 3, 28, 28]], 'desc_bprop': [[100, 3, 14, 14]]}), ('MaxPoolGrad', { 'block': G.MaxPoolGrad(kernel_size=(2, 2), strides=(2, 2), pad_mode="VALID"), 'desc_inputs': [[3, 4, 6, 6], [3, 4, 3, 3], [3, 4, 3, 3]], 'desc_bprop': [[3, 4, 6, 6]], 'skip': ['backward']}), ('MaxPool3D', { 'block': P.MaxPool3D(kernel_size=2, strides=2, pad_mode="VALID"), 'desc_inputs': [[100, 3, 28, 28, 28]], 'desc_bprop': [[100, 3, 14, 14, 14]]}), ('MaxPool3D', { 'block': P.MaxPool3D(kernel_size=4, strides=2, pad_mode="PAD", pad_list=2, ceil_mode=False), 'desc_inputs': [[100, 3, 28, 28, 28]], 'desc_bprop': [[100, 3, 14, 14, 14]]}), ('MaxPool3D', { 'block': P.MaxPool3D(kernel_size=4, strides=2, pad_mode="PAD", pad_list=2, ceil_mode=True), 'desc_inputs': [[100, 3, 28, 28, 28]], 'desc_bprop': [[100, 3, 14, 14, 14]]}), ('MaxPool3DGrad', { 'block': G.MaxPool3DGrad(kernel_size=2, strides=2, pad_mode="VALID"), 'desc_inputs': [[3, 4, 6, 6, 6], [3, 4, 3, 3, 3], [3, 4, 3, 3, 3]], 'desc_bprop': [[3, 4, 6, 6, 6]]}), ('AvgPool', { 'block': P.AvgPool(kernel_size=(2, 2), strides=(2, 2), pad_mode="VALID"), 'desc_inputs': [[100, 3, 28, 28]], 'desc_bprop': [[100, 3, 14, 14]]}), ('AvgPool3D_1', { 'block': P.AvgPool3D(kernel_size=2, strides=2, pad_mode="VALID"), 'desc_inputs': [[10, 3, 28, 28, 28]], 'desc_bprop': [[10, 3, 14, 14, 14]]}), ('AvgPool3D_2', { 'block': P.AvgPool3D(kernel_size=3, strides=2, pad_mode="PAD", pad=1), 'desc_inputs': [[10, 3, 28, 31, 24]], 'desc_bprop': [[10, 3, 14, 16, 12]]}), ('MaxPoolWithArgmax', { 'block': P.MaxPoolWithArgmax(kernel_size=2, strides=2), 'desc_inputs': [[128, 32, 32, 64]], 'desc_bprop': [[128, 32, 16, 32], ([128, 32, 16, 32], {'dtype': np.int32})]}), ('SoftmaxCrossEntropyWithLogits', { 'block': P.SoftmaxCrossEntropyWithLogits(), 'desc_inputs': [[1, 10], [1, 10]], 'desc_bprop': [[1], [1, 10]], 'skip': ['backward_exec']}), ('Flatten', { 'block': P.Flatten(), 'desc_inputs': [[128, 32, 32, 64]], 'desc_bprop': [[128, 65536]]}), ('LogSoftmax', { 'block': P.LogSoftmax(), 'desc_inputs': [[64, 2]], 'desc_bprop': [[64, 2]]}), ('LogSoftmaxGrad', { 'block': G.LogSoftmaxGrad(), 'desc_inputs': [[16, 1234], [16, 1234]], 'desc_bprop': [[64, 2]], 'skip': ['backward']}), ('L2Normalize', { 'block': P.L2Normalize(), 'desc_inputs': [[2, 2]], 'desc_bprop': [[2, 2]]}), ('L2NormalizeGrad', { 'block': G.L2NormalizeGrad(), 'desc_inputs': [[2, 2], [2, 2], [2, 2]], 'desc_bprop': [[2, 2]], 'skip': ['backward']}), ('LayerNorm', { 'block': P.LayerNorm(), 'desc_inputs': [[2, 16], [16], [16]], 'desc_bprop': [[2, 16], [2, 1], [2, 1]]}), ('LayerNormGrad', { 'block': G.LayerNormGrad(), 'desc_inputs': [[2, 16], [2, 16], [2, 16], [2, 16], [16]], 'desc_bprop': [[2, 16], [16], [16]], 'skip': ['backward']}), ('BatchNorm', { 'block': P.BatchNorm(), 'desc_inputs': [[128, 64, 32, 32], [64], [64], [64], [64]], 'desc_bprop': [[128, 64, 32, 32], [64], [64], [64], [64]], 'skip': []}), ('BatchNormGrad', { 'block': G.BatchNormGrad(), 'desc_inputs': [[128, 64, 32, 32], [128, 64, 32, 32], [64], [64], [64], [64]], 'desc_bprop': [[128, 64, 32, 32], [64], [64]], 'skip': ['backward']}), ('SyncBatchNorm', { 'block': inner.SyncBatchNorm(), 'desc_inputs': [[128, 64, 32, 32], [64], [64], [64], [64]], 'desc_bprop': [[128, 64, 32, 32], [64], [64], [64], [64]], 'skip': []}), ('SyncBatchNormGrad', { 'block': G.SyncBatchNormGrad(), 'desc_inputs': [[128, 64, 32, 32], [128, 64, 32, 32], [64], [64], [64]], 'desc_bprop': [[128, 64, 32, 32], [64], [64], [64], [64]], 'skip': ['backward']}), ('TopK', { 'block': P.TopK(), 'desc_const': [5], 'desc_inputs': [[20, 20, 10]], 'desc_bprop': [[20, 20, 5]], 'skip': ['backward']}), ('Sort', { 'block': P.Sort(), 'desc_inputs': [[2, 3, 4]], 'desc_bprop': [[2, 3, 4], ([2, 3, 4], {'dtype': np.int32})]}), ('GatherV2_0', { 'block': P.Gather(), 'desc_const': [0], 'desc_inputs': [[3, 1, 2], Tensor(np.array([0, 1]).astype(np.int32))], 'desc_bprop': [[2, 1, 2]]}), ('GatherV2_1', { 'block': P.Gather(), 'desc_const': [2], 'desc_inputs': [[3, 1, 3], Tensor(np.array([0, 1]).astype(np.int32))], 'desc_bprop': [[3, 1, 2]]}), ('GatherV2_2', { 'block': P.Gather(), 'desc_const': [0], 'desc_inputs': [[3, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))], 'desc_bprop': [[3, 2, 1, 3]]}), ('GatherV2_3', { 'block': P.Gather(), 'desc_const': [2], 'desc_inputs': [[3, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))], 'desc_bprop': [[3, 1, 3, 2]]}), ('GatherV2_4', { 'block': P.Gather(), 'desc_const': [1], 'desc_inputs': [[32, 5, 1024], Tensor(np.array([3]).astype(np.int32))], 'desc_bprop': [[32, 1, 1024]]}), ('GatherV2_5', { 'block': P.Gather(), 'desc_const': [-1], 'desc_inputs': [[3, 1, 3], Tensor(np.array([0, 1]).astype(np.int32))], 'desc_bprop': [[3, 1, 2]]}), ('GatherV2_6', { 'block': P.Gather(), 'desc_const': [0], 'desc_inputs': [[1152], Tensor(np.array(10).astype(np.int32))], 'desc_bprop': [Tensor(np.array(10).astype(np.float32))]}), ('SparseGatherV2_0', { 'block': P.SparseGatherV2(), 'desc_const': [0], 'desc_inputs': [[3, 1, 2], Tensor(np.array([0, 1]).astype(np.int32))], 'desc_bprop': [[2, 1, 2]]}), ('Range', { 'block': inner.Range(1.0, 5.0), 'desc_inputs': [Tensor(np.ones([10]).astype(np.float32))], 'desc_bprop': [[10]]}), ('UnsortedSegmentSum', { 'block': P.UnsortedSegmentSum(), 'desc_const': [1280], 'desc_inputs': [[1280, 1024], Tensor(np.ones(1280).astype(np.int32))], 'desc_bprop': [[1280, 1024]]}), ('UnsortedSegmentSum_1', { 'block': P.UnsortedSegmentSum(), 'desc_const': [4], 'desc_inputs': [[3, 2, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))], 'desc_bprop': [[4, 1, 3]]}), ('UnsortedSegmentMin', { 'block': P.UnsortedSegmentMin(), 'desc_const': [4], 'desc_inputs': [[3, 2, 1, 3], Tensor(np.array([1, 2, 3]).astype(np.int32))], 'desc_bprop': [[4, 2, 1, 3]]}), ('UnsortedSegmentMax', { 'block': P.UnsortedSegmentMax(), 'desc_const': [4], 'desc_inputs': [[3, 2, 1, 3], Tensor(np.array([1, 2, 3]).astype(np.int32))], 'desc_bprop': [[4, 2, 1, 3]]}), ('UnsortedSegmentProd', { 'block': P.UnsortedSegmentProd(), 'desc_const': [4], 'desc_inputs': [[3, 2, 1, 3], Tensor(np.array([0, 1, 0]).astype(np.int32))], 'desc_bprop': [[4, 2, 1, 3]]}), ('DropoutGenMask', { 'block': P.DropoutGenMask(), 'desc_const': [(2, 2), Tensor(0.5, mstype.float32)], 'desc_inputs': [], 'desc_bprop': [Tensor(np.ones(1).astype(np.int8))], 'skip': ['backward']}), ('DropoutDoMask', { 'block': P.DropoutDoMask(), 'desc_const': [Tensor(0.5)], 'desc_inputs': [[64, 12, 128, 128], Tensor(np.ones(1572864).astype(np.uint8))], 'desc_bprop': [[64, 12, 128, 128]]}), ('Dropout', { 'block': nn.Dropout(0.5), 'desc_inputs': [[64, 12, 128, 128]], 'desc_bprop': [[64, 12, 128, 128]]}), ('ReduceMean0', { 'block': P.ReduceMean(), 'desc_const': [(2,)], 'desc_inputs': [[3, 2, 2]], 'desc_bprop': [[3, 2]]}), ('ReduceMean1', { 'block': P.ReduceMean(), 'desc_const': [2], 'desc_inputs': [[3, 2, 2]], 'desc_bprop': [[3, 2]]}), ('All', { 'block': P.ReduceAll(), 'desc_const': [(1,)], 'desc_inputs': [Tensor(np.ones([3, 2]).astype(np.bool_))], 'desc_bprop': [[3]], 'skip': ['backward']}), ('DescConst', { 'block': Tensor(np.array([2], np.float32)), 'desc_inputs': [], 'desc_bprop': [[1]], 'skip': ['backward'], 'add_fake_input': True}), ('Fill', { 'block': P.Fill(), 'desc_const': [mstype.float32, (2, 3), 1.0], 'desc_inputs': [], 'desc_bprop': [[2, 3]], 'skip': ['backward'], 'add_fake_input': True}), ('OnesLike', { 'block': P.OnesLike(), 'desc_inputs': [Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))], 'desc_bprop': [Tensor(np.array([[1, 1], [1, 1]]).astype(np.int32))] }), ('ZerosLike', { 'block': P.ZerosLike(), 'desc_inputs': [Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))], 'desc_bprop': [Tensor(np.array([[1, 1], [1, 1]]).astype(np.int32))] }), ('Softmax', { 'block': P.Softmax(), 'desc_inputs': [[5, 5]], 'desc_bprop': [[5, 5]]}), ('Softsign', { 'block': P.Softsign(), 'desc_inputs': [[5, 5]], 'desc_bprop': [[5, 5]]}), ('DepthwiseConv2dNative_1', { 'block': P.DepthwiseConv2dNative(3, (3, 3), pad_mode="pad", pad=1, stride=2), 'desc_inputs': [[10, 32, 32, 32], [1, 32, 3, 3]], 'desc_bprop': [[10, 32, 16, 16]]}), ('DepthwiseConv2dNative_2', { 'block': P.DepthwiseConv2dNative(1, (3, 3), pad_mode="same", pad=0, stride=1), 'desc_inputs': [[2592, 2048, 4, 4], [1, 2048, 3, 3]], 'desc_bprop': [[2592, 2048, 4, 4]]}), ('SigmoidCrossEntropyWithLogits', { 'block': P.SigmoidCrossEntropyWithLogits(), 'desc_inputs': [[128, 10], [128, 10]], 'desc_bprop': [[128, 10]]}), ('Pad', { 'block': P.Pad(((1, 2), (2, 3))), 'desc_inputs': [[7, 7]], 'desc_bprop': [[10, 12]]}), ('BinaryCrossEntropy', { 'block': P.BinaryCrossEntropy(), 'desc_inputs': [[1, 2, 3], [1, 2, 3], [1, 2, 3]], 'desc_bprop': []}), ('SparseApplyAdagrad', { 'block': SparseApplyAdagradNet(), 'desc_inputs': [[3, 3], Tensor(np.ones((3,), np.int32))], 'desc_bprop': [[3, 3], [3, 3]], 'skip': ['backward']}), ('SparseApplyAdagradV2', { 'block': SparseApplyAdagradV2Net(), 'desc_inputs': [[3, 3], Tensor(np.ones((3,), np.int32))], 'skip': ['backward']}), ('SparseApplyFtrl', { 'block': SparseApplyFtrlNet(), 'desc_inputs': [[3, 3], Tensor(np.ones((3,), np.int32))], 'skip': ['backward']}), ('SparseApplyFtrlV2', { 'block': SparseApplyFtrlV2Net(), 'desc_inputs': [[3, 3], Tensor(np.ones((3,), np.int32))], 'skip': ['backward']}), ('ApplyProximalAdagrad', { 'block': ApplyProximalAdagradNet(), 'desc_inputs': [[3, 3]], 'skip': ['backward']}), ('SparseApplyProximalAdagrad', { 'block': SparseApplyProximalAdagradNet(), 'desc_inputs': [[3, 3], Tensor(np.ones((3,), np.int32))], 'skip': ['backward']}), ('ApplyAdaMax', { 'block': ApplyAdaMaxNet(), 'desc_inputs': [[3, 3]], 'skip': ['backward']}), ('ApplyAdadelta', { 'block': ApplyAdadeltaNet(), 'desc_inputs': [[3, 3]], 'skip': ['backward']}), ('ApplyAdagrad', { 'block': ApplyAdagradNet(), 'desc_inputs': [[3, 3]], 'skip': ['backward']}), ('ApplyAdagradV2', { 'block': ApplyAdagradV2Net(), 'desc_inputs': [[3, 3]], 'skip': ['backward']}), ('ApplyAddSign', { 'block': ApplyAddSignNet(), 'desc_inputs': [[3, 3]], 'skip': ['backward']}), ('ApplyPowerSign', { 'block': ApplyPowerSignNet(), 'desc_inputs': [[3, 3]], 'skip': ['backward']}), ('ApplyGradientDescent', { 'block': ApplyGradientDescentNet(), 'desc_inputs': [[3, 3]], 'skip': ['backward']}), ('ApplyProximalGradientDescent', { 'block': ApplyProximalGradientDescentNet(), 'desc_inputs': [[3, 3]], 'skip': ['backward']}), ('Flatten_1', { 'block': NetForFlatten(), 'desc_inputs': [Tensor(np.ones([2, 3, 4]).astype(np.int32)), Tensor(np.ones([2, 12]).astype(np.int32))], 'desc_bprop': [Tensor(np.ones([2, 12]).astype(np.int32))], 'skip': ['backward']}), ('Flatten_2', { 'block': NetForFlatten(), 'desc_inputs': [Tensor(np.ones([8]).astype(np.int32)), Tensor(np.ones([8, 3]).astype(np.int32))], 'desc_bprop': [Tensor(np.ones([8, 3]).astype(np.int32))], 'skip': ['backward']}), ('Flatten_3', { 'block': NetForFlattenComposed(), 'desc_inputs': [Tensor(np.ones([2, 3, 4]).astype(np.int32)), Tensor(np.ones([2, 12]).astype(np.int32))], 'desc_bprop': [Tensor(np.ones([2, 12]).astype(np.int32))], 'skip': []}), ('ArgmaxNet', { 'block': ArgmaxNet(), 'desc_inputs': [Tensor(np.array([[128, 32, 32, 64], [128, 32, 32, 64]]).astype(np.float16))], 'desc_bprop': [Tensor(np.array([[128, 32, 32, 64], [128, 32, 32, 64]]).astype(np.float16))], 'skip': ['backward']}), ('ArgminNet', { 'block': ArgminNet(), 'desc_inputs': [Tensor(np.array([[128, 32, 32, 64], [128, 32, 32, 64]]).astype(np.float16))], 'desc_bprop': [Tensor(np.array([[128, 32, 32, 64], [128, 32, 32, 64]]).astype(np.float16))], 'skip': ['backward']}), ('StridedSliceNet', { 'block': StridedSliceNet(), 'desc_inputs': [[6, 7, 8, 9, 10]], 'skip': ['backward']}), ('OneHot', { 'block': P.OneHot(), 'desc_const': [3, Tensor(1.0, mstype.float32), Tensor(0.0, mstype.float32)], 'desc_inputs': [Tensor(np.array([64]).astype(np.int32))], 'desc_bprop': [[1, 3]]}), ('ReduceProd_0', { 'block': P.ReduceProd(), 'desc_const': [0], 'desc_inputs': [[3, 2]], 'desc_bprop': [[2]]}), ('ReduceProd_1', { 'block': P.ReduceProd(keep_dims=True), 'desc_const': [0], 'desc_inputs': [[3, 2]], 'desc_bprop': [[1, 2]]}), ('CumProd', { 'block': P.CumProd(), 'desc_const': [0], 'desc_inputs': [[3, 2]], 'desc_bprop': [[3, 2]]}), ('ApplyFtrl', { 'block': ApplyFtrlNet(), 'desc_inputs': [[3, 3]], 'desc_bprop': [3, 3], 'skip': ['backward']}), ('ApplyRMSProp', { 'block': ApplyRMSNet(), 'desc_inputs': [[3, 3]], 'desc_bprop': [3, 3], 'skip': ['backward']}), ('ApplyCenteredRMSProp', { 'block': P.ApplyCenteredRMSProp(), 'desc_const': [0.9, 0.0, 1e-10, 0.001], 'desc_inputs': [Tensor(1., mstype.float32), Tensor(2., mstype.float32), Tensor(1., mstype.float32), Tensor(2., mstype.float32), Tensor(1., mstype.float32)], 'desc_bprop': [1], 'skip': ['backward']}), ('CTCLoss', { 'block': P.CTCLoss(), 'desc_inputs': [Tensor(np.ones([6, 4, 6]).astype(np.float32)), Tensor(np.array([[0, 1], [1, 0], [2, 3], [3, 2]]).astype(np.int64)), Tensor(np.array([1, 2, 3, 4]).astype(np.int32)), Tensor(np.array([6, 6, 6, 6]).astype(np.int32))], 'desc_bprop': [[4], [6, 4, 6]]}), ('CTCGreedyDecoder', { 'block': CTCGreedyDecoderNet(), 'desc_inputs': [[2, 2, 3], Tensor(np.array([2, 2]).astype(np.int32))], 'skip': ['backward']}), ('L2Loss_1', { 'block': P.L2Loss(), 'desc_inputs': [Tensor(np.array([1, 2, 3, 4]), mstype.float32)], 'desc_bprop': []}), ('L2Loss_2', { 'block': P.L2Loss(), 'desc_inputs': [Tensor(np.array([[1, 1], [2, 2], [3, 3], [4, 4]]), mstype.float16)], 'desc_bprop': []}), ('SoftMarginLoss', { 'block': P.SoftMarginLoss(reduction="none"), 'desc_inputs': [Tensor(np.array([[0.3, 0.7], [0.5, 0.5]]).astype(np.float32)), Tensor(np.array([[-1, 1], [1, -1]]).astype(np.float32))], 'desc_bprop': [Tensor(np.array([[1, 1], [1, 1]]).astype(np.float32))]}), ('BCEWithLogitsLoss', { 'block': P.BCEWithLogitsLoss(), 'desc_inputs': [[3, 3], [3, 3], [3, 3], [3, 3]], 'desc_bprop': []}), ('ResizeBilinear', { 'block': P.ResizeBilinear((5, 5)), 'desc_inputs': [Tensor([[[[1, 2, 3, 4, 5], [1, 2, 3, 4, 5]]]], mstype.float16)], 'desc_bprop': [Tensor([[[[1, 2, 3, 4, 5], [1, 2, 3, 4, 5]]]], mstype.float16)]}), ('ResizeBilinearGrad', { 'block': G.ResizeBilinearGrad(), 'desc_inputs': [Tensor([[[[1, 2, 3, 4, 5]]]], mstype.float32), Tensor([[[[1, 2, 3, 4, 5]]]], mstype.float32)], 'desc_bprop': [Tensor([[[[1, 2, 3, 4, 5]]]], mstype.float32)], 'skip': ['backward']}), ('ROIAlign', { 'block': P.ROIAlign(7, 7, 0.03125, 2), 'desc_inputs': [[2, 256, 192, 320], [1024, 5]], 'desc_bprop': [[1024, 256, 7, 7]]}), ('ROIAlignGrad', { 'block': G.ROIAlignGrad((1, 1, 1, 1), 2, 2, 0.5, 2), 'desc_inputs': [[1, 1, 2, 2], [1, 5]], 'desc_bprop': [[1, 1, 2, 2]], 'skip': ['backward']}), ('LARSUpdate', { 'block': P.LARSUpdate(1e-05, 0.001, False), 'desc_const': [0.0, 0.001], 'desc_inputs': [[3, 3], [3, 3], [3, 3], [3, 3]], 'desc_bprop': [3, 3], 'skip': ['backward']}), ('SGD', { 'block': P.SGD(0.0, 0.0, False), 'desc_inputs': [[3, 3], [3, 3], Tensor(0.001, mstype.float32), [3, 3], Tensor(0.1, mstype.float32), [3, 3]], 'desc_bprop': [3, 3], 'skip': ['backward']}), ('BinaryCrossEntropy', { 'block': P.BinaryCrossEntropy(), 'desc_inputs': [Tensor([[0.3, 0.8], [0.4, 0.3]], mstype.float16), Tensor([[0.4, 1.2], [-0.4, -0.9]], mstype.float16), Tensor([[-1.4, -0.7], [0.9, 0.7]], mstype.float16)], 'desc_bprop': []}), ('BinaryCrossEntropyGrad', { 'block': G.BinaryCrossEntropyGrad(), 'desc_inputs': [Tensor([[0.3, 0.8], [0.4, 0.3]], mstype.float16), Tensor([[0.4, 1.2], [-0.4, -0.9]], mstype.float16), Tensor(0.85, mstype.float16), Tensor([[-1.4, -0.7], [0.9, 0.7]], mstype.float16)], 'desc_bprop': [], 'skip': ['backward']}), ('DataFormatDimMap', { 'block': P.DataFormatDimMap(), 'desc_inputs': [Tensor([0, 1, 2, 3], mstype.int32)], 'desc_bprop': [], 'skip': ['backward']}), ('MaxPoolGradGrad', { 'block': G.MaxPoolGradGrad(), 'desc_inputs': [Tensor(np.random.rand(1, 1, 2, 2), mstype.float16), Tensor(np.random.rand(1, 1, 2, 2), mstype.float16), Tensor(np.random.rand(1, 1, 2, 2), mstype.float16)], 'desc_bprop': [], 'skip': ['backward']}), ('MaxPoolGradGradWithArgmax', { 'block': G.MaxPoolGradGradWithArgmax(), 'desc_inputs': [Tensor(np.random.rand(1, 1, 2, 2), mstype.float16), Tensor(np.random.rand(1, 1, 2, 2), mstype.float16), Tensor(np.zeros((1, 1, 2, 2)), mstype.uint16)], 'desc_bprop': [], 'skip': ['backward']}), ('Roll', { 'block': nn.Roll(shift=[1, -2], axis=[0, 1]), 'desc_inputs': [Tensor([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]], mstype.float32)], 'desc_bprop': [Tensor([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]], mstype.float32)]}), ('SoftShrink', { 'block': P.SoftShrink(), 'desc_inputs': [Tensor(np.array([[0.5297, 0.7871, 1.1754], [0.7836, 0.6218, -1.1542]]), mstype.float32)], 'desc_bprop': [Tensor(np.array([[0, 0.4, 1], [1, 2, 4]]), mstype.float32)]}), ('SoftShrinkGrad', { 'block': G.SoftShrinkGrad(), 'desc_inputs': [Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]]), mstype.float16), Tensor(np.array([[-3, -2, 0], [1, 2, 4]]), mstype.float16)], 'desc_bprop': [], 'skip': ['backward']}), ('HSigmoidGrad', { 'block': G.HSigmoidGrad(), 'desc_inputs': [Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]]), mstype.float16), Tensor(np.array([[-4, -3, -2], [1, 2, 4]]), mstype.float16)], 'skip': ['backward']}), ('HSigmoid', { 'block': P.HSigmoid(), 'desc_inputs': [Tensor(np.array([[-4, 4, 1]]), mstype.float32)], 'desc_bprop': [Tensor(np.array([[0, 1, 0.6666]]), mstype.float32)], 'skip': ['backward']}), ('HardShrink', { 'block': P.HShrink(), 'desc_inputs': [Tensor(np.array([[0.5, 1, 2.0], [0.0533, 0.0776, -2.1233]]), mstype.float32)], 'desc_bprop': [], 'skip': ['backward']}), ('HShrinkGrad', { 'block': G.HShrinkGrad(), 'desc_inputs': [Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]]), mstype.float16), Tensor(np.array([[-4, -3, -2], [1, 2, 4]]), mstype.float16)], 'skip': ['backward']}), ('ApplyAdagradDA', { 'block': ApplyAdagradDANet(), 'desc_inputs': [Tensor(np.array([[0.3, 0.4], [0.1, 0.2]]).astype(np.float32)), Tensor(0.001, mstype.float32), Tensor(0.001, mstype.float32), Tensor(0.001, mstype.float32), Tensor(2, mstype.int32)], 'skip': ['backward']}), ('SparseApplyRMSProp', { 'block': SparseApplyRMSPropNet(0.2, 0.01, 1e-6), 'desc_inputs': [Tensor(0.01, mstype.float32), Tensor(np.array([[0.3, 0.7], [0.1, 0.8]]).astype(np.float32)), Tensor(np.array([0, 1], dtype=np.int32))], 'skip': ['backward']}), ] test_case_array_ops = [ ('SpaceToDepth', { 'block': P.SpaceToDepth(2), 'desc_inputs': [[1, 3, 2, 2]], 'desc_bprop': [[1, 12, 1, 1]]}), ('DepthToSpace', { 'block': P.DepthToSpace(2), 'desc_inputs': [[1, 12, 1, 1]], 'desc_bprop': [[1, 3, 2, 2]]}), ('Split', { 'block': P.Split(1, 2), 'desc_inputs': [Tensor(np.array([[1, 1, 1, 1], [2, 2, 2, 2]]))], 'skip': ['backward']}), ('Argmax', { 'block': P.Argmax(), 'desc_inputs': [[128, 32, 32, 64]], 'desc_bprop': [0], 'skip': ['backward']}), ('Argmin', { 'block': P.Argmin(), 'desc_inputs': [[128, 32, 32, 64]], 'desc_bprop': [1], 'skip': ['backward']}), ('ArgMaxWithValue', { 'block': P.ArgMaxWithValue(), 'desc_inputs': [[128, 32, 32, 64]], 'desc_bprop': [[1], [1]], 'skip': ['backward']}), ('ArgMinWithValue', { 'block': P.ArgMinWithValue(), 'desc_inputs': [[128, 32, 32, 64]], 'desc_bprop': [[1], [1]], 'skip': ['backward']}), ('Transpose_dim3', { 'block': P.Transpose(), 'desc_const': [(0, 2, 1)], 'desc_inputs': [[1, 2, 3]], 'desc_bprop': [[1, 3, 2]]}), ('Transpose_dim4', { 'block': P.Transpose(), 'desc_const': [(0, 1, 2, 3)], 'desc_inputs': [[1, 2, 3, 4]], 'desc_bprop': [[1, 2, 4, 3]]}), ('AddN', { 'block': NetForTupleInput(P.AddN()), 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]], 'desc_bprop': [[2, 3, 3, 5]]}), ('AccumulateNV2', { 'block': NetForTupleInput(P.AccumulateNV2()), 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]], 'desc_bprop': [[2, 3, 3, 5]]}), ('Shape', { 'block': P.Shape(), 'desc_inputs': [[3, 3, 2, 2]], 'skip': ['backward']}), ('Reshape', { 'block': P.Reshape(), 'desc_const': [(64,)], 'desc_inputs': [[64, 1]], 'desc_bprop': [[64]]}), ('Cast', { 'block': P.Cast(), 'desc_const': [mstype.int32], 'desc_inputs': [[2, 3, 4, 5]], 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5)).astype(np.int32))]}), ('ExpandDims', { 'block': P.ExpandDims(), 'desc_const': [0], 'desc_inputs': [[2, 2]], 'desc_bprop': [[1, 2, 2]]}), ('ExpandDims_1', { 'block': P.ExpandDims(), 'desc_const': [-1], 'desc_inputs': [[2, 2]], 'desc_bprop': [[2, 2, 1]]}), ('Squeeze', { 'block': P.Squeeze(2), 'desc_inputs': [[3, 2, 1]], 'desc_bprop': [[3, 2]]}), ('Squeeze_0', { 'block': P.Squeeze(), 'desc_inputs': [[3, 1, 2, 1]], 'desc_bprop': [[3, 2]]}), ('Squeeze_1', { 'block': P.Squeeze(), 'desc_inputs': [[1, 1, 1, 1]], 'desc_bprop': [1.0], 'skip': ['backward']}), ('Squeeze_2', { 'block': P.Squeeze((2, 3)), 'desc_inputs': [[3, 2, 1, 1]], 'desc_bprop': [[3, 2]]}), ('Size', { 'block': P.Size(), 'desc_inputs': [[2, 3, 5]], 'skip': ['backward']}), ('Tile_0', { 'block': P.Tile(), 'desc_const': [(1, 2)], 'desc_inputs': [[64, 1]], 'desc_bprop': [[64, 2]]}), ('Tile_1', { 'block': P.Tile(), 'desc_const': [(1, 1)], 'desc_inputs': [[64, 1]], 'desc_bprop': [[64, 1]]}), ('Tile_2', { 'block': P.Tile(), 'desc_const': [(2, 1, 1, 2)], 'desc_inputs': [[2, 2, 2]], 'desc_bprop': [[2, 2, 2, 4]]}), ('ReverseV2', { 'block': P.ReverseV2(axis=[1]), 'desc_inputs': [(Tensor(np.array([[1, 2, 3, 4], [5, 6, 7, 8]]).astype(np.float32)))], 'desc_bprop': [(Tensor(np.array([[1, 2, 3, 4], [5, 6, 7, 8]]).astype(np.float32)))]}), ('Rint', { 'block': P.Rint(), 'desc_inputs': [(Tensor(np.array([-1.6, -0.1, 1.5, 2.0]).astype(np.float32)))], 'skip': ['backward']}), ('ConcatV2_0', { 'block': NetForConcat1(), 'desc_inputs': [ Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32)), Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))], 'desc_bprop': [([4, 2], {'dtype': np.int32})]}), ('ConcatV2_1', { 'block': NetForConcat2(), 'desc_inputs': [Tensor(np.array([[[0, 1, 2]], [[2, 1, 2]]]).astype(np.int32)), Tensor(np.array([[[0, 1]], [[2, 1]]]).astype(np.int32))], 'desc_bprop': [([2, 1, 5], {'dtype': np.int32})]}), ('ConcatV2_2', { 'block': NetForConcat(), 'desc_inputs': [[2, 2]], 'desc_bprop': [[4, 2]]}), ('ConcatV2_3', { 'block': NetForConcat1(), 'desc_inputs': [[2, 2], [2, 2]], 'desc_bprop': [[4, 2]]}), ('ConcatV2_4', { 'block': NetForConcat3(), 'desc_inputs': [ Tensor(np.ones((3, 2, 3), np.float32)), Tensor(np.ones((5, 2, 3), np.float32)), Tensor(np.ones((6, 2, 3), np.float32))], 'desc_bprop': [[14, 2, 3]]}), ('ConcatV2_5', { 'block': NetForConcat4(), 'desc_inputs': [Tensor(np.array([1], np.float32)), Tensor(np.array([1], np.float32)), Tensor(np.array([1], np.float32))], 'desc_bprop': [[3,]]}), ('Stack_0', { 'block': NetForStackInput(P.Stack()), 'desc_inputs': [[2, 2], [2, 2], [2, 2]], 'desc_bprop': [[3, 2, 2]], }), ('Stack_1', { 'block': NetForStackInput(P.Stack(axis=-2)), 'desc_inputs': [[3, 2, 3], [3, 2, 3], [3, 2, 3]], 'desc_bprop': [[3, 2, 3, 3]], }), ('Stack_2', { 'block': NetForStackInput(P.Stack()), 'desc_inputs': [[128, 128], [128, 128]], 'desc_bprop': [[2, 128, 128]], }), ('Stack_3', { 'block': NetForStackInput(P.Stack()), 'desc_inputs': [[2, 2]], 'desc_bprop': [[1, 2, 2]]}), ('Unpack_0', { 'block': NetForUnpackInput(P.Unstack(axis=0)), 'desc_inputs': [[2, 4]], 'desc_bprop': [[4], [4]], }), ('Unpack_1', { 'block': NetForUnpackInput(P.Unstack(axis=-1)), 'desc_inputs': [Tensor(np.array([[1, 1, 1]], np.float32))], 'desc_bprop': [[1], [1], [1]], }), ('Diag_1', { 'block': P.Diag(), 'desc_inputs': [[4]], 'desc_bprop': [[4, 4]], }), ('Diag_2', { 'block': P.Diag(), 'desc_inputs': [[4, 4]], 'desc_bprop': [[4, 4, 4, 4]], }), ('DiagPart_1', { 'block': P.DiagPart(), 'desc_inputs': [[4, 4]], 'desc_bprop': [[4]], }), ('DiagPart_2', { 'block': P.DiagPart(), 'desc_inputs': [[4, 4, 4, 4]], 'desc_bprop': [[4, 4]], }), ('SpaceToBatch_1', { 'block': P.SpaceToBatch(2, [[0, 0], [0, 0]]), 'desc_inputs': [[1, 3, 2, 2]], 'desc_bprop': [[4, 3, 1, 1]], }), ('SpaceToBatch_2', { 'block': P.SpaceToBatch(2, [[1, 1], [0, 4]]), 'desc_inputs': [[1, 3, 2, 2]], 'desc_bprop': [[4, 3, 2, 3]], }), ('BatchToSpace_1', { 'block': P.BatchToSpace(2, [[0, 0], [0, 0]]), 'desc_inputs': [[4, 3, 1, 1]], 'desc_bprop': [[1, 3, 2, 2]], }), ('BatchToSpace_2', { 'block': P.BatchToSpace(2, [[0, 0], [0, 1]]), 'desc_inputs': [[4, 3, 1, 1]], 'desc_bprop': [[1, 3, 2, 1]], }), ('UnsortedSegmentMin_1', { 'block': P.UnsortedSegmentMin(), 'desc_const': [2], 'desc_inputs': [Tensor(np.array([[1, 2, 3], [4, 5, 6], [4, 2, 1]]).astype(np.float32)), Tensor(np.array([0, 1, 1]).astype(np.int32))], 'desc_bprop': [Tensor(np.array([[1, 2, 3], [4, 2, 1]]).astype(np.float32))]}), ('BroadcastTo', { 'block': P.BroadcastTo((2, 3)), 'desc_inputs': [Tensor(np.array([1, 2, 3]).astype(np.float32))], 'desc_bprop': [Tensor(np.array([[1, 2, 3], [1, 2, 3]]).astype(np.float32))]}), ('InTopK', { 'block': P.InTopK(2), 'desc_inputs': [Tensor(np.array([[1, 2, 3], [2, 3, 6], [4, 2, 1]]).astype(np.float32)), Tensor(np.array([2, 1, 2]).astype(np.int32))], 'skip': ['backward'], }), ('InplaceUpdate', { 'block': P.InplaceUpdate((0, 2)), 'desc_inputs': [Tensor(np.arange(24).reshape(3, 4, 2).astype(np.float32)), Tensor(np.arange(16).reshape(2, 4, 2).astype(np.float32))], 'skip': ['backward'], }), ('ReverseSequence', { 'block': P.ReverseSequence(1, 0), 'desc_inputs': [Tensor(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]).astype(np.float32)), Tensor(np.array([1, 2, 3]).astype(np.int32))], 'desc_bprop': [[3, 3]]}), ('EditDistance', { 'block': EditDistance(Tensor(np.array([1, 1, 2]).astype(np.int64)), Tensor(np.array([2, 2, 2]).astype(np.int64))), 'desc_inputs': [Tensor(np.array([[0, 0, 0], [1, 0, 1], [1, 1, 1]]).astype(np.int64)), Tensor(np.array([1, 2, 3]).astype(np.float32)), Tensor(np.array([[0, 1, 0], [0, 0, 1], [1, 1, 0], [1, 0, 1]]).astype(np.int64)), Tensor(np.array([1, 3, 2, 1]).astype(np.float32))], 'skip': ['backward'], }), ('LinSpace', { 'block': P.LinSpace(), 'desc_const': [5], 'desc_inputs': [Tensor(1, mstype.float32), Tensor(10, mstype.float32)], 'skip': ['backward'], }), ('MaskedFill', { 'block': P.MaskedFill(), 'desc_inputs': [Tensor(np.array([[1.0, 2.0, 3.0]]), mstype.float32), Tensor(np.array([[True, True, False]]), mstype.bool_), Tensor(4.0, mstype.float32)], 'desc_bprop': [Tensor(np.array([[1.0, 2.0, 3.0]]), mstype.float32)], }), ('MatrixDiag', { 'block': inner.MatrixDiag(), 'desc_inputs': [Tensor(np.array([1, -1]), mstype.float32), Tensor(np.arange(-12, 0).reshape(3, 2, 2), mstype.float32)], 'skip': ['backward'], }), ('MatrixDiagPart', { 'block': inner.MatrixDiagPart(), 'desc_inputs': [Tensor(np.arange(12).reshape(3, 2, 2), mstype.float32), Tensor(np.arange(-12, 0).reshape(3, 2, 2), mstype.float32)], 'skip': ['backward'], }), ('MatrixSetDiag', { 'block': inner.MatrixSetDiag(), 'desc_inputs': [Tensor(np.arange(12).reshape(3, 2, 2), mstype.float32), Tensor(np.arange(6).reshape(3, 2), mstype.float32), Tensor(np.arange(-12, 0).reshape(3, 2, 2), mstype.float32)], 'skip': ['backward'], }), ('TransShape', { 'block': P.TransShape(), 'desc_const': [(1, 12, 24, 24)], 'desc_inputs': [[1, 3, 24, 24]], 'desc_bprop': [[1, 12, 24, 24]], }), ('ParallelConcat', { 'block': ParallelConcatNet(), 'desc_inputs': [Tensor([[1, 2]], mstype.float32), Tensor([[5, 6]], mstype.float32)], 'skip': ['backward'], }), ('SplitV', { 'block': P.SplitV(size_splits=[1, 2], split_dim=1, num_split=2), 'desc_inputs': [Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])], 'desc_bprop': [(Tensor([[1], [4], [7]]), Tensor([[2, 3], [5, 6], [8, 9]]))], }), ] test_case_other_ops = [ ('ScalarLog', { 'block': F.scalar_log, 'desc_const': [0.0], 'desc_inputs': [], 'desc_bprop': [1], 'skip': ['backward']}), ('BoundingBoxEncode', { 'block': P.BoundingBoxEncode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0)), 'desc_inputs': [[256, 4], [256, 4]], 'desc_bprop': [[256, 4]], 'skip': ['backward']}), ('BoundingBoxDecode', { 'block': P.BoundingBoxDecode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0), max_shape=(768, 1280)), 'desc_inputs': [[256, 4], [256, 4]], 'desc_bprop': [[256, 4]], 'skip': ['backward']}), ('GatherNd', { 'block': P.GatherNd(), 'desc_inputs': (Tensor(np.ones((1, 3, 6, 6), np.float32)), Tensor(np.ones((2, 4), np.int32))), 'desc_bprop': [[2]]}), ('ScatterNd', { 'block': P.ScatterNd(), 'desc_const': [(3, 3)], 'desc_inputs': (Tensor(np.ones((2, 2), np.int32)), Tensor(np.ones((2,), np.int32))), 'desc_bprop': [([3, 3], {'dtype': np.int32})]}), ('TensorScatterUpdate', { 'block': P.TensorScatterUpdate(), 'desc_inputs': (Tensor(np.arange(3 * 4 * 5).reshape((3, 4, 5)), mstype.float32), Tensor(np.array([[0, 1], [1, 2]], np.int32)), Tensor(np.ones([2, 5], np.float32) * 99)), 'desc_bprop': [([3, 4, 5], {'dtype': np.float32})]}), ('ScatterMaxUseLocking', { 'block': ScatterMax(use_locking=True), 'desc_inputs': (Tensor(np.array([1, 0], np.int32)), Tensor(np.array([[5.0, 5.0, 5.0], [4.0, 4.0, 4.0]], np.float32))), 'skip': ['backward']}), ('ScatterMax1d', { 'block': ScatterMax(), 'desc_inputs': (Tensor(np.array([1, 0], np.int32)), Tensor(np.array([[5.0, 5.0, 5.0], [4.0, 4.0, 4.0]], np.float32))), 'skip': ['backward']}), ('ScatterMaxF32', { 'block': ScatterMax(), 'desc_inputs': (Tensor(np.array([[0, 0], [1, 1]], np.int32)), Tensor(np.ones([2, 2, 3], np.float32) * 99)), 'skip': ['backward']}), ('ScatterMaxF16', { 'block': ScatterMax(np.float16), 'desc_inputs': (Tensor(np.array([[0, 0], [1, 1]], np.int32)), Tensor(np.ones([2, 2, 3], np.float16) * 99)), 'skip': ['backward']}), ('ScatterMaxI32', { 'block': ScatterMax(np.int32), 'desc_inputs': (Tensor(np.array([[0, 0], [1, 1]], np.int32)), Tensor(np.ones([2, 2, 3], np.int32) * 99)), 'skip': ['backward']}), ('ScatterMinUseLocking', { 'block': ScatterMin(use_locking=True), 'desc_inputs': (Tensor(np.array([1, 0], np.int32)), Tensor(np.ones([2, 3], np.float32))), 'skip': ['backward']}), ('ScatterMin1d', { 'block': ScatterMin(), 'desc_inputs': (Tensor(np.array([1, 0], np.int32)), Tensor(np.ones([2, 3], np.float32))), 'skip': ['backward']}), ('ScatterMinF32', { 'block': ScatterMin(), 'desc_inputs': (Tensor(np.array([[0, 0], [1, 1]], np.int32)), Tensor(np.ones([2, 2, 3], np.float32))), 'skip': ['backward']}), ('ScatterMinF16', { 'block': ScatterMin(np.float16), 'desc_inputs': (Tensor(np.array([[0, 0], [1, 1]], np.int32)), Tensor(np.ones([2, 2, 3], np.float16))), 'skip': ['backward']}), ('ScatterMinI32', { 'block': ScatterMin(np.int32), 'desc_inputs': (Tensor(np.array([[0, 0], [1, 1]], np.int32)), Tensor(np.ones([2, 2, 3], np.int32))), 'skip': ['backward']}), ('ScatterUpdate', { 'block': ScatterUpdate((6,)), 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)), Tensor(np.array([2.0, 3.0, 4.0], np.float32))), 'skip': ['backward']}), ('ScatterAddUseLocking', { 'block': ScatterAdd((6,), use_locking=True), 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)), Tensor(np.array([2.0, 3.0, 4.0], np.float32))), 'skip': ['backward']}), ('ScatterNonAliasingAdd_1d', { 'block': ScatterNonAliasingAdd((8,)), 'desc_inputs': (Tensor(np.array([[2], [3], [4], [5]], np.int32)), Tensor(np.array([2.0, 3.0, 4.0, 8.0], np.float32))), 'skip': ['backward']}), ('ScatterNdAdd', { 'block': ScatterNdAdd((8,)), 'desc_inputs': (Tensor(np.array([[2], [3], [4], [5]], np.int32)), Tensor(np.array([2.0, 3.0, 4.0, 8.0], np.float32))), 'skip': ['backward']}), ('ScatterNdSub', { 'block': ScatterNdAdd((8,)), 'desc_inputs': (Tensor(np.array([[2], [3], [4], [5]], np.int32)), Tensor(np.array([2.0, 3.0, 4.0, 8.0], np.float32))), 'skip': ['backward']}), ('ScatterAdd', { 'block': ScatterAdd((6,)), 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)), Tensor(np.array([2.0, 3.0, 4.0], np.float32))), 'skip': ['backward']}), ('ScatterAddScalar', { 'block': ScatterAdd((6,)), 'desc_inputs': (Tensor(np.array([2], np.int32)), Tensor(np.array([2.0], np.float32))), 'skip': ['backward']}), ('ScatterAdd2d', { 'block': ScatterAdd((3, 4)), 'desc_inputs': (Tensor(np.array([[0, 1], [1, 2]], np.int32)), Tensor(np.array([[[1, 1, 1, 1], [2, 2, 2, 2]], [[3, 3, 3, 3], [4, 4, 4, 4]]], np.float32))), 'skip': ['backward']}), ('ScatterAddF16', { 'block': ScatterAdd((6,), np.float16), 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)), Tensor(np.array([2.0, 3.0, 4.0], np.float16))), 'skip': ['backward']}), ('ScatterAddI8', { 'block': ScatterAdd((6,), np.int8), 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)), Tensor(np.array([2, 3, 4], np.int8))), 'skip': ['backward']}), ('ScatterAddI32', { 'block': ScatterAdd((6,), np.int32), 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)), Tensor(np.array([2, 3, 4], np.int32))), 'skip': ['backward']}), ('ScatterAddU8', { 'block': ScatterAdd((6,), np.uint8), 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)), Tensor(np.array([2, 3, 4], np.uint8))), 'skip': ['backward']}), ('ScatterMulUseLocking', { 'block': ScatterMul((6,), use_locking=True), 'desc_inputs': (Tensor(np.array([2], np.int32)), Tensor(np.array([2.0], np.float32))), 'skip': ['backward']}), ('ScatterMulScalar', { 'block': ScatterMul((6,)), 'desc_inputs': (Tensor(np.array([2], np.int32)), Tensor(np.array([2.0], np.float32))), 'skip': ['backward']}), ('ScatterMul2d', { 'block': ScatterMul((3, 4)), 'desc_inputs': (Tensor(np.array([[0, 1], [1, 2]], np.int32)), Tensor(np.array([[[1, 1, 1, 1], [2, 2, 2, 2]], [[3, 3, 3, 3], [4, 4, 4, 4]]], np.float32))), 'skip': ['backward']}), ('ScatterMulF16', { 'block': ScatterMul((6,), np.float16), 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)), Tensor(np.array([2.0, 3.0, 4.0], np.float16))), 'skip': ['backward']}), ('ScatterMulI8', { 'block': ScatterMul((6,), np.int8), 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)), Tensor(np.array([2, 3, 4], np.int8))), 'skip': ['backward']}), ('ScatterMulI32', { 'block': ScatterMul((6,), np.int32), 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)), Tensor(np.array([2, 3, 4], np.int32))), 'skip': ['backward']}), ('ScatterMulU8', { 'block': ScatterMul((6,), np.uint8), 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)), Tensor(np.array([2, 3, 4], np.uint8))), 'skip': ['backward']}), ('ScatterDivUseLocking', { 'block': ScatterDiv((6,), use_locking=True), 'desc_inputs': (Tensor(np.array([2], np.int32)), Tensor(np.array([2.0], np.float32))), 'skip': ['backward']}), ('ScatterDivScalar', { 'block': ScatterDiv((6,)), 'desc_inputs': (Tensor(np.array([2], np.int32)), Tensor(np.array([2.0], np.float32))), 'skip': ['backward']}), ('ScatterDiv2d', { 'block': ScatterDiv((3, 4)), 'desc_inputs': (Tensor(np.array([[0, 1], [1, 2]], np.int32)), Tensor(np.array([[[1, 1, 1, 1], [2, 2, 2, 2]], [[3, 3, 3, 3], [4, 4, 4, 4]]], np.float32))), 'skip': ['backward']}), ('ScatterDivF16', { 'block': ScatterDiv((6,), np.float16), 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)), Tensor(np.array([2.0, 3.0, 4.0], np.float16))), 'skip': ['backward']}), ('ScatterDivI8', { 'block': ScatterDiv((6,), np.int8), 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)), Tensor(np.array([2, 3, 4], np.int8))), 'skip': ['backward']}), ('ScatterDivU8', { 'block': ScatterDiv((6,), np.uint8), 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)), Tensor(np.array([2, 3, 4], np.uint8))), 'skip': ['backward']}), ('ScatterSubUseLocking', { 'block': ScatterSub((6,), use_locking=True), 'desc_inputs': (Tensor(np.array([2], np.int32)), Tensor(np.array([2.0], np.float32))), 'skip': ['backward']}), ('ScatterSubScalar', { 'block': ScatterSub((6,)), 'desc_inputs': (Tensor(np.array([2], np.int32)), Tensor(np.array([2.0], np.float32))), 'skip': ['backward']}), ('ScatterSub2d', { 'block': ScatterSub((3, 4)), 'desc_inputs': (Tensor(np.array([[0, 1], [1, 2]], np.int32)), Tensor(np.array([[[1, 1, 1, 1], [2, 2, 2, 2]], [[3, 3, 3, 3], [4, 4, 4, 4]]], np.float32))), 'skip': ['backward']}), ('ScatterSubF16', { 'block': ScatterSub((6,), np.float16), 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)), Tensor(np.array([2.0, 3.0, 4.0], np.float16))), 'skip': ['backward']}), ('ScatterSubI32', { 'block': ScatterSub((6,), np.int32), 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)), Tensor(np.array([2, 3, 4], np.int32))), 'skip': ['backward']}), ('ScatterSubI8', { 'block': ScatterSub((6,), np.int8), 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)), Tensor(np.array([2, 3, 4], np.int8))), 'skip': ['backward']}), ('ScatterSubU8', { 'block': ScatterSub((6,), np.uint8), 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)), Tensor(np.array([1, 1, 0], np.uint8))), 'skip': ['backward']}), ('SmoothL1Loss', { 'block': P.SmoothL1Loss(), 'desc_inputs': [[256, 4], [256, 4]], 'desc_bprop': [[256, 4]]}), ('IOU', { 'block': P.IOU(), 'desc_inputs': [Tensor(np.ones((256, 4), np.float16)), Tensor(np.ones((128, 4), np.float16))], 'desc_bprop': [convert([128, 256], np.float16)]}), ('PopulationCount', { 'block': P.PopulationCount(), 'desc_inputs': [Tensor(np.array([1, 2, 3]).astype(np.int16))], 'skip': ['backward']}), ('BasicLSTMCellNet', { 'block': BasicLSTMCellNet(), 'desc_inputs': [Tensor(np.random.rand(1, 32).astype(np.float16)), Tensor(np.random.rand(1, 64).astype(np.float16)), Tensor(np.random.rand(1, 64).astype(np.float16)), Tensor(np.random.rand(96, 256).astype(np.float16)), Tensor(np.random.rand(256,).astype(np.float16))], 'desc_bprop': [Tensor(np.random.rand(1, 64).astype(np.float16)), Tensor(np.random.rand(1, 64).astype(np.float16)), Tensor(np.random.rand(1, 64).astype(np.float16)), Tensor(np.random.rand(1, 64).astype(np.float16)), Tensor(np.random.rand(1, 64).astype(np.float16))]}), ('DynamicGRUV2Net', { 'block': DynamicGRUV2Net(), 'desc_inputs': [Tensor(np.random.rand(2, 8, 64).astype(np.float16)), Tensor(np.random.rand(64, 48).astype(np.float16)), Tensor(np.random.rand(16, 48).astype(np.float16)), Tensor(np.random.rand(48).astype(np.float16)), Tensor(np.random.rand(48).astype(np.float16)), Tensor(np.random.rand(8, 16).astype(np.float16))], 'desc_bprop': [Tensor(np.random.rand(2, 8, 16).astype(np.float16)), Tensor(np.random.rand(2, 8, 16).astype(np.float16)), Tensor(np.random.rand(2, 8, 16).astype(np.float16)), Tensor(np.random.rand(2, 8, 16).astype(np.float16)), Tensor(np.random.rand(2, 8, 16).astype(np.float16))]}), ] test_case_quant_ops = [ ('Quant_1', { 'block': inner.Quant(0.5, 0.0, False, "Round"), 'desc_inputs': [Tensor(np.random.rand(1, 2, 4, 4), mstype.float32)], 'skip': ['backward']}), ('Quant_2', { 'block': inner.Quant(80.0, 10.0, True, "Round"), 'desc_inputs': [Tensor([100.0, 200.0], mstype.float32)], 'skip': ['backward']}), ('Quant_3', { 'block': inner.Quant(80.0, 0.0, False, "Floor"), 'desc_inputs': [Tensor([100.0, 200.0], mstype.float32)], 'skip': ['backward']}), ('Quant_4', { 'block': inner.Quant(80.0, 0.0, False, "Ceil"), 'desc_inputs': [Tensor([100.0, 200.0], mstype.float32)], 'skip': ['backward']}), ('Quant_5', { 'block': inner.Quant(80.0, 0.0, False, "Trunc"), 'desc_inputs': [Tensor([100.0, 200.0], mstype.float32)], 'skip': ['backward']}), ('Quant_6', { 'block': inner.Quant(-80.0, 10.0, False, "Round"), 'desc_inputs': [Tensor([100.0, 200.0], mstype.float32)], 'skip': ['backward']}), ('Quant_7', { 'block': inner.Quant(80.0, -10.0, False, "Round"), 'desc_inputs': [Tensor([100.0, 200.0], mstype.float32)], 'skip': ['backward']}), ('Quant_8', { 'block': inner.Quant(80.0, 10.0, False, "Round"), 'desc_inputs': [Tensor([100.0, 200.0], mstype.float16)], 'skip': ['backward']}), ] test_case_lists = [test_case_nn_ops, test_case_math_ops, test_case_array_ops, test_case_other_ops, test_case_quant_ops] test_case = functools.reduce(lambda x, y: x + y, test_case_lists) # use -k to select certain testcast # pytest tests/python/ops/test_ops.py::test_backward -k LayerNorm test_exec_case = test_case test_backward_exec_case = filter(lambda x: 'skip' not in x[1] or 'backward' not in x[1]['skip'], test_case) @non_graph_engine @mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config) def test_exec(): context.set_context(mode=context.GRAPH_MODE) return test_exec_case @mindspore_test(pipeline_for_compile_grad_ge_graph_for_case_by_case_config) def test_backward_exec(): context.set_context(mode=context.GRAPH_MODE) return test_backward_exec_case @security_off_wrap @non_graph_engine @mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config) def test_summary_ops(): if security.enable_security(): return [] test_cases_for_summary_ops = [ ('Summary', { 'block': SummaryNet(), 'desc_inputs': [Tensor(np.array([1.1]).astype(np.float32)), Tensor(np.array([1.2]).astype(np.float32))], 'skip': ['backward']}), ('HistogramSummary', { 'block': HistogramSummaryNet(), 'desc_inputs': [Tensor(np.array([1.1]).astype(np.float32)), Tensor(np.array([1.2]).astype(np.float32))], 'skip': ['backward']}), ] context.set_context(mode=context.GRAPH_MODE) return test_cases_for_summary_ops def test_summary_ops_security_on(): if security.enable_security(): with pytest.raises(ValueError) as exc: SummaryNet() assert str(exc.value) == 'The Summary is not supported, please without `-s on` and recompile source.' with pytest.raises(ValueError) as exc: HistogramSummaryNet() assert str(exc.value) == 'The Summary is not supported, please without `-s on` and recompile source.' raise_set = [ ('Cast_Error', { 'block': (P.Cast(), {'exception': TypeError}), 'desc_const': [mstype.int32], 'desc_inputs': ['wrong input'], 'desc_bprop': [Tensor(np.ones((2, 3, 3, 5)).astype(np.int32))]}), ('Maximum_Error', { 'block': (P.Maximum(), {'exception': TypeError}), 'desc_const': [(1, 2, 3)], 'desc_inputs': [[2, 3, 3, 5]], 'desc_bprop': [[2, 3, 3, 5]]}), ('Shape_error', { 'block': (P.Shape(), {'exception': TypeError}), 'desc_inputs': [(64, 1)], 'desc_bprop': [[64]]}), ('Flatten_Error', { 'block': (NetForFlatten0D(), {'exception': ValueError}), 'desc_inputs': [Tensor(np.array(0).astype(np.int32))], 'desc_bprop': [Tensor(np.array(0).astype(np.int32))]}), ('ScatterNdUpdate', { 'block': (P.ScatterNdUpdate(), {'exception': TypeError}), 'desc_inputs': (Tensor(np.ones((2, 3), np.float32)), Tensor(np.ones((2, 2), np.float32)), Tensor(np.ones((2,), np.float32))), 'desc_bprop': [[2, 3]]}), ('PReLU', { 'block': (P.PReLU(), {'exception': ValueError}), 'desc_inputs': [[2], [1]], 'desc_bprop': [[1]]}), ('SSIM', { 'block': (nn.SSIM(), {'exception': ValueError}), 'desc_inputs': [Tensor(np.ones((1, 3, 8, 8)), mstype.float32), Tensor(np.ones((1, 3, 8, 8)), mstype.float32)]}) ] @mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception) def test_check_exception(): return raise_set