# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test nn ops """ import numpy as np from numpy.random import normal import pytest import mindspore.nn as nn import mindspore.context as context from mindspore.ops.composite import core from mindspore.common.api import ms_function from mindspore import Tensor from mindspore.ops import functional as F from mindspore.ops import prim_attr_register, PrimitiveWithInfer context.set_context(mode=context.GRAPH_MODE) class FakeOp(PrimitiveWithInfer): @prim_attr_register def __init__(self): """""" def infer_shape(self, x, y): self.second_shape = y self.add_prim_attr("second_shape", y) return x def infer_dtype(self, x, y): return x # test the normal case that should generate independent primitive because of different # generated attributes after inference def test_conv2d_same_primitive(): class Conv2DSameNet(nn.Cell): def __init__(self): super(Conv2DSameNet, self).__init__() self.conv1 = nn.Conv2d(16, 64, (1, 41), (1, 4), "same", 0, 1, has_bias=True) self.conv2 = nn.Conv2d(16, 64, (1, 41), (1, 4), "same", 0, 1, has_bias=True) def construct(self, x, y): r1 = self.conv1(x) r2 = self.conv2(y) return (r1, r2) t1 = Tensor(np.ones([1, 16, 1, 1918]).astype(np.float32)) t2 = Tensor(np.ones([1, 16, 1, 3840]).astype(np.float32)) net = Conv2DSameNet() net(t1, t2) # test free variable function list as parameter def test_remove_and_fv_2(): @core(loop_can_uroll=True) def inner_loop(x, input_data, fv_func_list): ret = () for fv_fn in fv_func_list: ele = fv_fn(input_data) ret += (ele,) return ret @ms_function def out_loop(input1, input_data0, input_data1): ret = () def fv_func1(y): return input1 * y def fv_func2(y): return input1 - y fv_func_list = [fv_func1, fv_func2] ele0 = inner_loop(input1, input_data0, fv_func_list) ele1 = inner_loop(input1, input_data1, fv_func_list) ret = (ele0, ele1) return ret input_data0 = Tensor(normal(0, 0.1, (3, 3))) input_data1 = Tensor(normal(0, 0.1, (3, 1))) input1 = Tensor(normal(0, 0.1, (3, 3))) out_loop(input1, input_data0, input_data1) # test cell as high order argument # The graph with free variables used as argument is not supported yet # because of the limit of inference specialize system def test_conv2d_op_with_argi_1(): class Conv2dNet(nn.Cell): def __init__(self): super(Conv2dNet, self).__init__() def construct(self, op, x): return op(x) class OpsNet(nn.Cell): def __init__(self, net): super(OpsNet, self).__init__() self.opnet = net self.conv2 = nn.Conv2d(16, 64, (1, 41), (1, 4), "same", 0, 1, has_bias=True) def construct(self, x, y): conv_op = self.conv2 a = self.opnet(conv_op, x) b = self.opnet(conv_op, y) return (a, b) t1 = Tensor(np.ones([1, 16, 1, 1918]).astype(np.float32)) t2 = Tensor(np.ones([1, 16, 1, 3840]).astype(np.float32)) net = OpsNet(Conv2dNet()) net(t1, t2) def test_conv2d_op_with_arg(): class FackOpNet(nn.Cell): def __init__(self): super(FackOpNet, self).__init__() self.op = FakeOp() def construct(self, x, y): return self.op(x, y) class OpNet(nn.Cell): def __init__(self): super(OpNet, self).__init__() def construct(self, op, x, y): return op(x, y) class OpsNet(nn.Cell): def __init__(self, net): super(OpsNet, self).__init__() self.opnet = net self.op = FackOpNet() def construct(self, x, y): op = self.op a = self.opnet(op, x, y) b = self.opnet(op, y, x) return (a, b) t1 = Tensor(np.ones([1, 16, 1, 1918]).astype(np.float32)) t2 = Tensor(np.ones([1, 16, 1, 3840]).astype(np.float32)) net = OpsNet(OpNet()) net(t1, t2) def test_conv2d_op_with_arg_same_input(): class FackOpNet(nn.Cell): def __init__(self): super(FackOpNet, self).__init__() self.op = FakeOp() def construct(self, x, y): return self.op(x, y) class OpNet(nn.Cell): def __init__(self): super(OpNet, self).__init__() def construct(self, op, x, y): return op(x, y) class OpsNet(nn.Cell): def __init__(self, net): super(OpsNet, self).__init__() self.opnet = net self.op = FackOpNet() def construct(self, x, y): op = self.op a = self.opnet(op, x, x) b = self.opnet(op, y, x) return (a, b) t1 = Tensor(np.ones([1, 16, 1, 1918]).astype(np.float32)) t2 = Tensor(np.ones([1, 16, 1, 3840]).astype(np.float32)) net = OpsNet(OpNet()) net(t1, t2) # test op with partial def test_op_as_partial(): class OpAsPartial(nn.Cell): def __init__(self): super(OpAsPartial, self).__init__() self.op = FakeOp() def construct(self, x, y, z): partial_op = F.partial(self.op, x) a = partial_op(y) b = partial_op(z) return a, b t1 = Tensor(np.ones([1, 16, 1, 1918]).astype(np.float32)) t2 = Tensor(np.ones([1, 16, 1, 3840]).astype(np.float32)) t3 = Tensor(np.ones([1, 16, 1, 1234]).astype(np.float32)) net = OpAsPartial() net(t1, t2, t3) # test op with partial def test_op_as_partial_inside(): class OpAsPartial(nn.Cell): def __init__(self): super(OpAsPartial, self).__init__() self.op = FakeOp() def construct(self, x, y, z): partial_op = F.partial(self.op, x) a = partial_op(y) b = partial_op(z) return a, b class OuterNet(nn.Cell): def __init__(self): super(OuterNet, self).__init__() self.net = OpAsPartial() def construct(self, x, y, z): a, b = self.net(x, y, z) return a, b t1 = Tensor(np.ones([1, 16, 1, 1918]).astype(np.float32)) t2 = Tensor(np.ones([1, 16, 1, 3840]).astype(np.float32)) t3 = Tensor(np.ones([1, 16, 1, 1234]).astype(np.float32)) net = OuterNet() net(t1, t2, t3) # test op with partial case 2 def test_op_as_partial_independent(): class OpAsPartial(nn.Cell): def __init__(self): super(OpAsPartial, self).__init__() self.op = FakeOp() def construct(self, x, y, z): partial_op1 = F.partial(self.op, x) a = partial_op1(y) partial_op2 = F.partial(self.op, x) b = partial_op2(z) return a, b t1 = Tensor(np.ones([1, 16, 1, 1918]).astype(np.float32)) t2 = Tensor(np.ones([1, 16, 1, 3840]).astype(np.float32)) t3 = Tensor(np.ones([1, 16, 1, 1234]).astype(np.float32)) net = OpAsPartial() net(t1, t2, t3) def test_nest_partial(): class NestPartial(nn.Cell): def __init__(self): super(NestPartial, self).__init__() self.op = FakeOp() def construct(self, x, y, z): partial_op1 = F.partial(self.op) partial_op2 = F.partial(partial_op1, x) a = partial_op2(y) partial_op3 = F.partial(self.op) partial_op4 = F.partial(partial_op3, x) b = partial_op4(z) return a, b t1 = Tensor(np.ones([1, 16, 1, 1918]).astype(np.float32)) t2 = Tensor(np.ones([1, 16, 1, 3840]).astype(np.float32)) t3 = Tensor(np.ones([1, 16, 1, 1234]).astype(np.float32)) net = NestPartial() net(t1, t2, t3) # high order argument # op and op args as network arguments def test_op_with_arg_as_input(): class WithOpArgNet(nn.Cell): def __init__(self): super(WithOpArgNet, self).__init__() def construct(self, op, x, y): return op(x, y) class OpsNet(nn.Cell): def __init__(self, net): super(OpsNet, self).__init__() self.opnet = net self.op = FakeOp() def construct(self, x, y, z): op = self.op a = self.opnet(op, x, z) b = self.opnet(op, x, y) return (a, b) t1 = Tensor(np.ones([1, 16, 1, 1918]).astype(np.float32)) t2 = Tensor(np.ones([1, 16, 1, 3840]).astype(np.float32)) t3 = Tensor(np.ones([1, 16, 1, 1234]).astype(np.float32)) net = OpsNet(WithOpArgNet()) net(t1, t2, t3) # The partial application used as argument is not supported yet # because of the limit of inference specialize system @pytest.mark.skip("poly in infer") def test_partial_as_arg(): class PartialArgNet(nn.Cell): def __init__(self): super(PartialArgNet, self).__init__() def construct(self, partial_op, y): return partial_op(y) class OpsNet(nn.Cell): def __init__(self, net): super(OpsNet, self).__init__() self.partial_net = net self.op = FakeOp() def construct(self, x, y, z): partial_op = F.partial(self.op, x) a = self.partial_net(partial_op, z) b = self.partial_net(partial_op, y) return (a, b) t1 = Tensor(np.ones([1, 16, 1, 1918]).astype(np.float32)) t2 = Tensor(np.ones([1, 16, 1, 3840]).astype(np.float32)) t3 = Tensor(np.ones([1, 16, 1, 1234]).astype(np.float32)) net = OpsNet(PartialArgNet()) net(t1, t2, t3)