# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import pytest import mindspore as ms import mindspore.nn as nn from mindspore import Tensor, context from mindspore.common.api import _cell_graph_executor from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits from mindspore.nn.optim.momentum import Momentum from mindspore.parallel import _cost_model_context as cost_model_context from mindspore.parallel._auto_parallel_context import auto_parallel_context from mindspore.train import Model from mindspore.context import ParallelMode from tests.dataset_mock import MindData class Dataset(MindData): def __init__(self, predict, label, length=3): super(Dataset, self).__init__(size=length) self.predict = predict self.label = label self.index = 0 self.length = length def __iter__(self): return self def __next__(self): if self.index >= self.length: raise StopIteration self.index += 1 return self.predict, self.label def reset(self): self.index = 0 class DenseNet1(nn.Cell): def __init__(self, has_bias=True, activation='relu'): super(DenseNet1, self).__init__() self.fc1 = nn.Dense(128, 128, has_bias=has_bias, activation=activation) self.fc2 = nn.Dense(128, 128, has_bias=has_bias, activation=activation) self.fc3 = nn.Dense(128, 128, has_bias=has_bias, activation=activation) self.fc4 = nn.Dense(128, 128, has_bias=has_bias, activation=activation) def construct(self, x): q = self.fc1(x) k = self.fc2(q) v = self.fc3(k) s = self.fc4(v) return s class DenseNet2(nn.Cell): def __init__(self, has_bias=True, activation='relu'): super(DenseNet2, self).__init__() self.fc1 = nn.Dense(128, 128, has_bias=has_bias, activation=activation) self.fc2 = nn.Dense(128, 128, has_bias=has_bias, activation=activation) self.fc3 = nn.Dense(128, 128, has_bias=has_bias, activation=activation) self.fc4 = nn.Dense(128, 128, has_bias=has_bias, activation=activation) self.fc5 = nn.Dense(128, 128, has_bias=has_bias, activation=activation) self.fc6 = nn.Dense(128, 128, has_bias=has_bias, activation=activation) self.fc7 = nn.Dense(128, 128, has_bias=has_bias, activation=activation) self.fc8 = nn.Dense(128, 128, has_bias=has_bias, activation=activation) def construct(self, x): q = self.fc1(x) k = self.fc2(q) v = self.fc3(k) s = self.fc4(v) t = self.fc5(s) u = self.fc6(t) w = self.fc7(u) z = self.fc8(w) return z class SimpleDMLNet(nn.Cell): def __init__(self, net1, net2): super(SimpleDMLNet, self).__init__() self.backbone1 = net1 self.backbone2 = net2 def construct(self, x): x1 = self.backbone1(x) x2 = self.backbone2(x) return x1 + x2 def train_common(net): batch_size = 32 learning_rate = 0.1 momentum = 0.9 epoch_size = 2 device_num = 4 auto_parallel_context().set_enable_all_reduce_fusion(enable_all_reduce_fusion=True) context.set_auto_parallel_context(device_num=device_num, parameter_broadcast=False) context.set_context(mode=context.GRAPH_MODE) predict = Tensor(np.ones([batch_size, 128]), dtype=ms.float32) label = Tensor(np.ones([batch_size]), dtype=ms.int32) dataset = Dataset(predict, label, 2) loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') opt = Momentum(net.trainable_params(), learning_rate, momentum) model = Model(net, loss, opt) model.train(epoch_size, dataset, dataset_sink_mode=False) allreduce_fusion_dict = _cell_graph_executor._get_allreduce_fusion(model._train_network) print(allreduce_fusion_dict) return allreduce_fusion_dict @pytest.mark.skip(reason="depreciated feature") def test_allreduce_fusion_parameters(): cost_model_context.reset_cost_model_context() cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_algorithm=2) algorithm = cost_model_context.get_cost_model_context('costmodel_allreduce_fusion_algorithm') assert algorithm == 2 cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_algorithm=1) algorithm = cost_model_context.get_cost_model_context('costmodel_allreduce_fusion_algorithm') assert algorithm == 1 cost_model_context.reset_cost_model_context() algorithm = cost_model_context.get_cost_model_context('costmodel_allreduce_fusion_algorithm') assert algorithm == 0 cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_times=2) fusion_times = cost_model_context.get_cost_model_context('costmodel_allreduce_fusion_times') assert fusion_times == 2 cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_tail_percent=0.2) tail_percent = cost_model_context.get_cost_model_context('costmodel_allreduce_fusion_tail_percent') assert tail_percent == 0.2 cost_model_context.reset_cost_model_context() tail_percent = cost_model_context.get_cost_model_context('costmodel_allreduce_fusion_tail_percent') assert tail_percent == 0.1 cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_tail_time=0.2) tail_time = cost_model_context.get_cost_model_context('costmodel_allreduce_fusion_tail_time') assert tail_time == 0.2 cost_model_context.reset_cost_model_context() tail_time = cost_model_context.get_cost_model_context('costmodel_allreduce_fusion_tail_time') assert tail_time == 0.1 cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_allreduce_inherent_time=0.2) allreduce_inherent_time = cost_model_context.get_cost_model_context( 'costmodel_allreduce_fusion_allreduce_inherent_time') assert allreduce_inherent_time == 0.2 cost_model_context.reset_cost_model_context() allreduce_inherent_time = cost_model_context.get_cost_model_context( 'costmodel_allreduce_fusion_allreduce_inherent_time') assert allreduce_inherent_time == 0.1 cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_allreduce_bandwidth=0.2) allreduce_bandwidth = cost_model_context.get_cost_model_context('costmodel_allreduce_fusion_allreduce_bandwidth') assert allreduce_bandwidth == 0.2 cost_model_context.reset_cost_model_context() allreduce_bandwidth = cost_model_context.get_cost_model_context('costmodel_allreduce_fusion_allreduce_bandwidth') assert allreduce_bandwidth == 0.1 cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_computation_time_parameter=0.2) computation_time_parameter = cost_model_context.get_cost_model_context( 'costmodel_allreduce_fusion_computation_time_parameter') assert computation_time_parameter == 0.2 cost_model_context.reset_cost_model_context() computation_time_parameter = cost_model_context.get_cost_model_context( 'costmodel_allreduce_fusion_computation_time_parameter') assert computation_time_parameter == 0.1 @pytest.mark.skip(reason="depreciated feature") def test_allreduce_fusion1(): cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_algorithm=1) cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_times=2) cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_tail_percent=0.5) context.reset_auto_parallel_context() context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL) net = SimpleDMLNet(DenseNet1(has_bias=False, activation=None), DenseNet2(has_bias=False, activation=None)) allreduce_fusion_dict = train_common(net) expect_dict = {'backbone2.fc8.weight': 2, 'backbone2.fc7.weight': 2, 'backbone2.fc6.weight': 2, 'backbone1.fc4.weight': 2, 'backbone1.fc3.weight': 2, 'backbone1.fc2.weight': 2, 'backbone2.fc5.weight': 1, 'backbone2.fc4.weight': 1, 'backbone2.fc3.weight': 1, 'backbone2.fc2.weight': 1, 'backbone2.fc1.weight': 1, 'backbone1.fc1.weight': 1} assert allreduce_fusion_dict == expect_dict cost_model_context.reset_cost_model_context() @pytest.mark.skip(reason="depreciated feature") # reset_cost_model_context is called, the default value of costmodel_allreduce_fusion_times is 0, step_allreduce_fusion # is bypassed. def test_allreduce_fusion2(): cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_times=2) cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_tail_percent=0.5) cost_model_context.reset_cost_model_context() context.reset_auto_parallel_context() context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL) net = SimpleDMLNet(DenseNet1(has_bias=False, activation=None), DenseNet2(has_bias=False, activation=None)) allreduce_fusion_dict = train_common(net) expect_dict = {} assert allreduce_fusion_dict == expect_dict cost_model_context.reset_cost_model_context() @pytest.mark.skip(reason="depreciated feature") def test_allreduce_fusion3(): cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_algorithm=1) cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_times=3) cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_tail_percent=0.3333333) context.reset_auto_parallel_context() context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL) net = SimpleDMLNet(DenseNet1(has_bias=True, activation='relu'), DenseNet2(has_bias=False, activation='relu')) allreduce_fusion_dict = train_common(net) expect_dict = {'backbone2.fc8.weight': 3, 'backbone2.fc7.weight': 3, 'backbone2.fc6.weight': 2, 'backbone2.fc5.weight': 2, 'backbone2.fc4.weight': 2, 'backbone2.fc3.weight': 1, 'backbone2.fc2.weight': 1, 'backbone2.fc1.weight': 1, 'backbone1.fc4.bias': 3, 'backbone1.fc4.weight': 3, 'backbone1.fc3.bias': 3, 'backbone1.fc3.weight': 2, 'backbone1.fc2.bias': 2, 'backbone1.fc2.weight': 2, 'backbone1.fc1.bias': 2, 'backbone1.fc1.weight': 2} assert allreduce_fusion_dict == expect_dict cost_model_context.reset_cost_model_context() @pytest.mark.skip(reason="depreciated feature") def test_allreduce_fusion4(): cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_algorithm=1) cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_times=2) cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_tail_percent=0.5) context.reset_auto_parallel_context() context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL) net = SimpleDMLNet(DenseNet2(has_bias=False, activation=None), DenseNet2(has_bias=False, activation=None)) allreduce_fusion_dict = train_common(net) expect_dict = {'backbone2.fc8.weight': 2, 'backbone2.fc7.weight': 2, 'backbone2.fc6.weight': 2, 'backbone1.fc8.weight': 2, 'backbone1.fc7.weight': 2, 'backbone1.fc6.weight': 2, 'backbone2.fc5.weight': 1, 'backbone2.fc4.weight': 1, 'backbone2.fc3.weight': 1, 'backbone2.fc2.weight': 1, 'backbone2.fc1.weight': 1, 'backbone1.fc5.weight': 1, 'backbone1.fc4.weight': 1, 'backbone1.fc3.weight': 1, 'backbone1.fc2.weight': 1, 'backbone1.fc1.weight': 1} assert allreduce_fusion_dict == expect_dict cost_model_context.reset_cost_model_context() @pytest.mark.skip(reason="depreciated feature") def test_allreduce_fusion5(): cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_algorithm=2) cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_tail_time=0.1) cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_allreduce_inherent_time=0.05) cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_allreduce_bandwidth=0.000001) cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_computation_time_parameter=0.0000015) context.reset_auto_parallel_context() context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL) net = SimpleDMLNet(DenseNet2(has_bias=False, activation=None), DenseNet2(has_bias=False, activation=None)) allreduce_fusion_dict = train_common(net) expect_dict = {'backbone2.fc8.weight': 3, 'backbone2.fc7.weight': 3, 'backbone2.fc6.weight': 3, 'backbone2.fc5.weight': 3, 'backbone2.fc4.weight': 2, 'backbone2.fc3.weight': 2, 'backbone2.fc2.weight': 1, 'backbone2.fc1.weight': 1, 'backbone1.fc8.weight': 3, 'backbone1.fc7.weight': 3, 'backbone1.fc6.weight': 3, 'backbone1.fc5.weight': 3, 'backbone1.fc4.weight': 2, 'backbone1.fc3.weight': 2, 'backbone1.fc2.weight': 1, 'backbone1.fc1.weight': 1,} assert allreduce_fusion_dict == expect_dict cost_model_context.reset_cost_model_context()