# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import mindspore as ms import mindspore.nn as nn from mindspore import Tensor from mindspore import context from mindspore.common.api import _cell_graph_executor from mindspore.common.parameter import Parameter from mindspore.nn.optim.momentum import Momentum from mindspore.ops import composite as C from mindspore.ops import operations as P from mindspore.train import Model from mindspore.context import ParallelMode from tests.dataset_mock import MindData from tests.ut.python.ops.test_math_ops import VirtualLoss context.set_context(mode=context.GRAPH_MODE) grad_all = C.GradOperation(get_all=True) class Dataset(MindData): def __init__(self, predict, label, length=3): super(Dataset, self).__init__(size=length) self.predict = predict self.label = label self.index = 0 self.length = length def __iter__(self): return self def __next__(self): if self.index >= self.length: raise StopIteration self.index += 1 return self.predict, self.label def reset(self): self.index = 0 class NetWithLoss(nn.Cell): def __init__(self, network): super(NetWithLoss, self).__init__() self.loss = VirtualLoss() self.network = network def construct(self, x, y, b): predict = self.network(x, y, b) return self.loss(predict) class GradWrap(nn.Cell): def __init__(self, network): super(GradWrap, self).__init__() self.network = network def construct(self, x, y, b): return grad_all(self.network)(x, y, b) def test_auto_parallel_arithmetic(): class Net(nn.Cell): def __init__(self): super().__init__() self.matmul = P.MatMul() self.one_hot = P.OneHot() self.on_value = Tensor(1.0, ms.float32) self.off_value = Tensor(0.0, ms.float32) self.matmul2 = P.MatMul() def construct(self, x, y, b): out = self.matmul(x, y) out1 = self.one_hot(b, 64, self.on_value, self.off_value) out2 = self.matmul2(out, out1) return out2 context.set_auto_parallel_context(device_num=8, global_rank=0) net = GradWrap(NetWithLoss(Net())) context.set_auto_parallel_context(parallel_mode="auto_parallel") net.set_auto_parallel() x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 64]), dtype=ms.float32) b = Tensor(np.ones([64]), dtype=ms.int32) net.set_train() _cell_graph_executor.compile(net, x, y, b) def test_auto_parallel_arithmetic_model(): class NetOneHot(nn.Cell): def __init__(self): super().__init__() self.matmul = P.MatMul() self.one_hot = P.OneHot().shard(((1, 8), (), ())) self.on_value = Tensor(1.0, ms.float32) self.off_value = Tensor(0.0, ms.float32) self.matmul2 = P.MatMul() self.w = Parameter(Tensor(np.zeros([32, 64]).astype(np.float32)), "weight", requires_grad=True) def construct(self, x, b): out = self.matmul(x, self.w) out1 = self.one_hot(b, 64, self.on_value, self.off_value) out2 = self.matmul2(out, out1) return out2 context.reset_auto_parallel_context() context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode=ParallelMode.AUTO_PARALLEL) net = NetOneHot() x = Tensor(np.ones([8, 32]), dtype=ms.float32) b = Tensor(np.ones([8]), dtype=ms.int32) dataset = Dataset(x, b, 2) opt = Momentum(net.trainable_params(), 0.1, 0.9) model = Model(net, optimizer=opt) model.train(2, dataset, dataset_sink_mode=False)